Skip to main content
Log in

Nonlinear Dirac Equation on Compact Spin Manifold with Chirality Boundary Condition

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the following nonlinear boundary value problem

$$\begin{aligned} \left\{ \begin{array}{ll} D\psi -a(x)\psi =f(x,\psi )+\epsilon h(x,\psi )&{} \quad \hbox {on }M \\ B_{CHI}\psi =0 &{} \quad \hbox {on }\partial M \end{array} \right. \end{aligned}$$
(D)

where M is a compact Riemannian spin manifold of dimension\(m\ge 2\) and the boundary \(\partial M\) has non-negative mean curvature, and D is the Dirac-Atiyah-Singer operator. Let S(M) denote the spinor bundle on M and \(\psi :M\rightarrow S(M)\) be a section. a(x) is a scalar field on M, \(\epsilon \in \mathbb {R}\). \(f(x,\psi )\), \(h(x,\psi ):M\times S_{m}\rightarrow S_{m}\) are two nonlinear map, and \(B_{CHI}\) is the chirality boundary operator. Under some mild assumptions on a, f, and h, we obtain the ground state solution of (D) with \(\epsilon =0\) and infinitely many large norm solutions of (D) with \(\epsilon \in \mathbb {R}\) and infinitely many small energy solutions of (D) with \(\epsilon >0\) by using variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Ammann, B.: A variational problem in conformal spin geometry. Universität Hamburg, Habilitationsschift (2003)

    Google Scholar 

  2. Ammann, B.: A spin-conformal lower bound of the first positive Dirac eigenvalue. Differ. Geom. Appl. 18, 21–32 (2003)

    Article  MathSciNet  Google Scholar 

  3. Ammann, B.: The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions. Commun. Anal. Geom. 17, 429–479 (2009)

    Article  MathSciNet  Google Scholar 

  4. Ammann, B., Humbert, E., Morel, B.: Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds. Commun. Anal. Geom. 14, 163–182 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Ding, Y.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226, 210–249 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Mederski, J.: Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium. J. Funct. Anal. 272, 4304–4333 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bartsch, T., Xu, T.: A spinorial analogue of the Brezis-Nirenberg theorem involving the critical Sobolev exponent. J. Funct. Anal. 280, 47pp (2021)

  8. Branding, V.: Energy methods for Dirac-type equations in two-dimensional Minkowski space. Lett. Math. Phys. 4, 295–325 (2019)

    Article  MathSciNet  Google Scholar 

  9. Bunke, U.: Comparison of Dirac operator on manifolds with boundary. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento. 30, 133–141 (1993)

    MathSciNet  Google Scholar 

  10. Chen, S., Gou, T.: Infinitely many localized semiclassical states for critical nonlinear Dirac equations. Nonlinearity. 34, 6358–6397 (2021)

    Article  MathSciNet  Google Scholar 

  11. Chen, Q., Jost, J., Wang, G.: Nonlinear Dirac equations on Riemann surfaces. Ann. Glob. Anal. Geom. 33, 253–270 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ding, Y.: Variational Methods for Strongly Indefinite Problems. Interdisciplinary Mathematical Sciences, vol. 7. World Scientific Publishing, Singapore (2007)

  13. Ding, Y.: Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation. J. Differ. Equ. 249, 1015–1034 (2010)

    Article  MathSciNet  Google Scholar 

  14. Ding, Y., Dong, X.: Infinitely many solutions of Dirac equations with concave and convex nonlinearities. Z. Angew. Math. Phys. 72, 1–17 (2021)

    Article  MathSciNet  Google Scholar 

  15. Ding, Y., Li, J.: A boundary value problem for the nonlinear Dirac equation on compact spin manifold. Calc. Var. Partial Differ. Equ. 57, 1–16 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ding, Y., Li, J., Xu, T.: Bifurcation on compact spin manifold. Calc. Var. Partial Differ. Equ. 55, Article 90 (2016)

  17. Ding, Y., Ruf, B.: Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities. SIAM J. Math. Anal. 44, 3755–3785 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ding, Y., Xu, T.: Localized concentration of semiclassical states for nonlinear Dirac equation. Arch. Ration. Mech. Anal. 216, 415–447 (2015)

    Article  MathSciNet  Google Scholar 

  19. Esteban, M.J., Séré, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)

    Article  MathSciNet  Google Scholar 

  20. Farinell, S., Schwarz, G.: On the spectrum of the Dirac operator under boundary conditions. J. Geom. Phys. 28, 67–84 (1998)

    Article  MathSciNet  Google Scholar 

  21. Feynman, R.P.: Quantum Electrodynamics. Benjamin, New York (1961)

    Google Scholar 

  22. Friedrich, T.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28, 143–157 (1998)

    Article  MathSciNet  Google Scholar 

  23. Gibbons, G.W., Hawking, S.W., Horowitz, G.T., Perry, M.J.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295–308 (1983)

    Article  MathSciNet  Google Scholar 

  24. Gu, L.J., Zhou, H.S.: An improved fountain theorem and its application. Adv. Nonlinear Stud. 17, 727–738 (2017)

    Article  MathSciNet  Google Scholar 

  25. Halmos, P.: Introduction to Hilbert Spaces and the Theory of Spectral Multiplicity. Chelsea Publishing Co., NewYork (1951)

    Google Scholar 

  26. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998)

    Article  MathSciNet  Google Scholar 

  27. Hijazi, O., Montiel, S., Roldán, A.: Eigenvalues boundary problems for the Dirac operator. Commun. Math. phys. 231, 375–390 (2002)

    Article  MathSciNet  Google Scholar 

  28. Hijazi, O., Montiel, S., Zhang, X.: Eigenvalues of the Dirac operator on manifolds with boundary. Commun. Math. phys. 221, 255–265 (2001)

    Article  MathSciNet  Google Scholar 

  29. Isobe, T.: Existence results for solutions to nonlinear Dirac equations on compact spin manifolds. Manuscr. Math. 114, 329–360 (2011)

    Article  MathSciNet  Google Scholar 

  30. Isobe, T.: Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds. J. Funct. Anal. 260, 253–307 (2011)

    Article  MathSciNet  Google Scholar 

  31. Isobe, T.: Morse-Floer theory for superquadratic Dirac equations, I: relative Morse indices and compactness. J. Fixed Point Theory Appl. 19, 1315–1363 (2017)

    Article  MathSciNet  Google Scholar 

  32. Isobe, T.: Spinorial Yamabe type equations on \(S^{3}\) via Conley index. Adv. Nonlinear Stud. 15, 39–60 (2015)

    Article  MathSciNet  Google Scholar 

  33. Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Differ. Equ. 3, 441–472 (1998)

    Google Scholar 

  34. Lawson, H.B., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton (1989)

    Google Scholar 

  35. Raulot, S.: A Sobolev-like inequality for the Dirac operator. J. Funct. Anal. 26, 1588–1617 (2009)

    Article  MathSciNet  Google Scholar 

  36. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, New York (1972)

    Google Scholar 

  37. Wang, Z., Zhang, X.: Semiclassical states for nonlinear Dirac equations with singular potential. Calc. Var. Partial Differ. Equ. 60, 1–29 (2021)

    Article  MathSciNet  Google Scholar 

  38. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Applications, vol. 24. Birkhäuser, Boston (1996)

    Google Scholar 

  39. Zhang, X., Wang, Z.: Semiclassical states of nonlinear Dirac equations with degenerate potential. Ann. Mat. Pura Appl. 198, 1955–1984 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely express their gratitude to the anonymous referees and the editor for their very valuable suggestions and comments which greatly improved the manuscript. The second author is supported by National Natural Science Foundation of China (No. 11471147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyun Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Zhao, P. Nonlinear Dirac Equation on Compact Spin Manifold with Chirality Boundary Condition. J Geom Anal 34, 126 (2024). https://doi.org/10.1007/s12220-024-01561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01561-5

Keywords

Mathematics Subject Classification

Navigation