Skip to main content
Log in

Improved Caffarelli–Kohn–Nirenberg Inequalities and Uncertainty Principle

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we prove some improved Caffarelli–Kohn–Nirenberg inequalities and uncertainty principle for complex- and vector-valued functions on \({\mathbb {R}}^n\), which is a further study of the results in Dang et al. (J Funct Anal 265:2239-2266, 2013). In particular, we introduce an analogue of “phase derivative" for vector-valued functions. Moreover, using the introduced “phase derivative", we extend the extra-strong uncertainty principle to cases for complex- and vector-valued functions defined on \(\mathbb S^n,n\ge 2.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Aubin, T.: Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire. J. Funct. Anal. 32, 148–174 (1979)

    Article  Google Scholar 

  2. Breitenberger, E.: Uncertainty measures and uncertainty relations for angle observables. Found. Phys. 15, 353–364 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MathSciNet  Google Scholar 

  4. Cazacu, C., Flynn, J., Lam, N.: Sharp second order uncertainty principles. J. Funct. Anal. 283, 109659 (2022)

    Article  MathSciNet  Google Scholar 

  5. Cohen, L.: Time–frequency analysis: theory and applications. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  6. Dai, F., Xu, Y.: The Hardy–Rellich inequalities and uncertainty principle on the sphere. Constr. Approx. 40, 141–171 (2014)

    Article  MathSciNet  Google Scholar 

  7. Dang, P.: Tighter uncertainty principles for periodic signals in terms of frequency. Math. Methods Appl. Sci. 38, 365–379 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dang, P., Deng, G.-T., Qian, T.: A sharper uncertainty principle. J. Funct. Anal. 265, 2239–2266 (2013)

    Article  MathSciNet  Google Scholar 

  9. Dang, P., Qian, T., Chen, Q.: Uncertainty principle and phase-amplitude analysis of signals on the unit sphere. Adv. Appl. Clifford Algebras 27, 2985–3013 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dang, P., Qian, T., Yang, Y.: Extra-Strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces. J. Math. Anal. Appl. 437, 912–940 (2016)

    Article  MathSciNet  Google Scholar 

  11. Duong, A. T., Nguyen, V. H.: The sharp second order Caffarelli–Kohn–Nirenberg inequality and stability estimates for the sharp second order uncertainty principle. arXiv:2102.01425 [math.FA], (2021)

  12. Erb, W.: Uncertainty principles on Riemannian manifolds, PhD Thesis (2010)

  13. Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)

    Article  MathSciNet  Google Scholar 

  14. Folland, G. B., Sitaram, A.: The uncertainty principle: a mathematical survey, the Journal of Fourier Analysis and Applicatins, 3 (1997), 207-238

  15. Gabor, D.: Theory of communication. J. IEE 93, 429–457 (1946)

    Google Scholar 

  16. Goh, S., Goodman, T.: Uncertainty principles and asymptotic behavior. Appl. Comput. Harmon. Anal. 16, 19–43 (2004)

    Article  MathSciNet  Google Scholar 

  17. Heisenberg, W.: Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  18. Kombe, I., Özaydin, M.: Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 361, 6191–6203 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kombe, I., Özaydin, M.: Hardy–Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 365, 5035–5050 (2013)

    Article  Google Scholar 

  20. Kristály, A.: Metric measure spaces supporting Gagliardo–Nirenberg inequalities: volume non-collapsing and rigidities. Calc. Var. Partial Differ. Equ. 55, 27 (2016)

    Article  MathSciNet  Google Scholar 

  21. Kristály, A.: Sharp uncertainty principles on Riemannian manifolds: the influence of curvature. J. Math. Pures Appl. (2017). https://doi.org/10.1016/j.matpur.2017.09.002

    Article  Google Scholar 

  22. Kristály, A., Ohta, S.: Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications. Math. Ann. 357, 711–726 (2013)

    Article  MathSciNet  Google Scholar 

  23. Narcowich, F.J., Ward, J.D.: Nonstationary wavelets on the-sphere for scattered data. Appl. Comput. Harmonic Anal. 3, 324–336 (1996)

    Article  MathSciNet  Google Scholar 

  24. Nguyen, V. H.: Sharp Caffarelli-Kohn-Nirenberg inequalities on Riemannian manifolds: the influence of curvature (2017). arXiv:1709.06120 [math.FA]

  25. Prestin, J., Quak, E.: Optimal functions for a periodic uncertainty principle and multiresolution analysis. Proc. Edinb. Math. Soc. 42, 225–242 (1999)

    Article  MathSciNet  Google Scholar 

  26. Prestin, J., Quak, E., Rauhut, H., Selig, K.: On the connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl. 9(4), 387–409 (2003)

    Article  MathSciNet  Google Scholar 

  27. Rösler, M., Voit, M.: An uncertainty principle for ultraspherical expansions. J. Math. Anal. Appl. 209, 624–634 (1997)

    Article  MathSciNet  Google Scholar 

  28. Steinerberger, S.: An uncertainty principle on compact manifolds. J. Fourier Anal. Appl. 9, 387–409 (2003)

    MathSciNet  Google Scholar 

  29. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)

    Google Scholar 

  30. Xia, C.Y.: Complete manifolds with non-negative Ricci curvature and almost best Sobolev constant. Ill. J. Math. 45, 1253–1259 (2001)

    Google Scholar 

  31. Xia, C.Y.: The Gagliardo–Nirenberg inequalities and manifolds of non-negative Ricci curvature. J. Funct. Anal. 224, 230–241 (2005)

    Article  MathSciNet  Google Scholar 

  32. Xia, C.Y.: The Caffarelli–Kohn–Nirenberg inequalities on complete manifolds. Math. Res. Lett. 14, 875–885 (2007)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Dang, P., Qian, T.: Stronger uncertainty principles for hypercomplex signals. Complex Var. Elliptic Equ. 60, 1696–1711 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yang, Y., Qian, T., Sommen, F.: Phase derivative of monogenic signals in higher dimensional spaces. Complex Anal. Oper. Theory 6, 987–1010 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W.-X. Mai was supported by NSFC Grant No.11901594, FRG Program of the Macau University of Science and Technology, No. FRG-22-076-MCMS, and the Science and Technology Development Fund, Macau SAR (File no. 0133/2022/A, 0022/2023/ITP1). P. Dang was supported by FRG Program of the Macau University of Science and Technology, No. FRG-23-033-FIE, and the Science and Technology Development Fund, Macau SAR (File No. 0030/2023/ITP1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixiong Mai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, P., Mai, W. Improved Caffarelli–Kohn–Nirenberg Inequalities and Uncertainty Principle. J Geom Anal 34, 70 (2024). https://doi.org/10.1007/s12220-023-01524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01524-2

Keywords

Navigation