Skip to main content
Log in

Dirichlet or Neumann Problem for Weighted 1-Laplace Equation with Application to Image Denoising

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we mainly consider the limit behavior of a weak solution \(u_{p}\) as \(p\rightarrow 1\), of the Dirichlet or Neumann problem for a weighted \((1,\infty )\ni p\)-Laplace equation on a Lipschitz domain, thereby giving an application of the standard weighted 1-Laplace operator to the image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Available Statement

This manuscript has no associated data.

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: The Dirichlet problem for the total variation flow. J. Funct. Anal. 180, 347–403 (2001)

    Article  MathSciNet  Google Scholar 

  2. Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differ. Integral Equ. 14, 321–360 (2001)

    MathSciNet  Google Scholar 

  3. Andreu, F., Caselles, V., Mazón, J. M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, Vol. 223. Birkhauser (2004)

  4. Andreu, F., Mazón, J.M., Moll, J.S.: The total variation flow with nonlinear boundary conditions. Asymptot. Anal. 43, 9–46 (2005)

    MathSciNet  Google Scholar 

  5. Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pur. Appl. 135, 293–318 (1983)

    Article  MathSciNet  Google Scholar 

  6. Baldi, A.: Weighted BV functions. Houston J. Math. 27, 683–705 (2001)

    MathSciNet  Google Scholar 

  7. Bendahmane, M., Wittbold, P., Zimmermann, A.: Renormalized solutions for a nonlinear parabolic equation with variable exponents and \(L^1\)-data. J. Differ. Equ. 249(6), 1483–1515 (2010)

    Article  Google Scholar 

  8. Betta, M.F., Mercaldo, A., Murat, F., Porzio, M.M.: Existence of renormalized solutions to nonlinear elliptic equations with lower-order terms and right-hand side measure. J. Math. Pures Appl. 81, 533–566 (2002)

    Article  MathSciNet  Google Scholar 

  9. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.L.: An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 22, 241–273 (1995)

    Google Scholar 

  10. Bertalmio, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19, 95–122 (2003)

    Article  MathSciNet  Google Scholar 

  11. Boccardo, L., Gallouët, Th.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    Article  MathSciNet  Google Scholar 

  12. Boccard, L., Gallouët, Th.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17, 641–655 (1992)

    MathSciNet  Google Scholar 

  13. Carrillo, J., Wittbold, P.: Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differ. Equ. 156, 93–121 (1999)

    Article  MathSciNet  Google Scholar 

  14. Che , G., Shi, H., Wang, Z.: Existence and concentration of positive ground states for a \(1\)-Laplacian problem in \(R^N\). Appl Math Lett. (100), 106045 (2020)

  15. Chen, G.-Q., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147(2), 89–118 (1999)

    Article  MathSciNet  Google Scholar 

  16. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Definition and existence of renormalized solutions of elliptic equations with general measure data. C. R. Math. Acad. Sci. Paris Ser. I(325), 481–486 (1997)

    Article  MathSciNet  Google Scholar 

  17. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. 28(4), 741–808 (1999)

    MathSciNet  Google Scholar 

  18. Dalláglio, A.: Approximated solutions of equations with \(L^1\) data. Application to the \(H\)-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 170(4), 207–240 (1996)

    Article  MathSciNet  Google Scholar 

  19. DallÁglio, A., Segura de León, S.: Bounded solutions to the 1-Laplacian equation with a total variation term. Ricerche mat 68, 597–614 (2019)

    Article  MathSciNet  Google Scholar 

  20. De Cicco, V., Giachetti, D., Oliva, F., Petitta, F.: The Dirichlet problem for singular elliptic equations with general nonlinearities. Calc. Var. 58, 129 (2019)

    Article  MathSciNet  Google Scholar 

  21. De Cicco, V., Giachetti, D., Segura de León, S.: Elliptic problems involving the \(1\)-Laplacian and a singular lower order term. J. Lond. Math. Soc. 99, 349–376 (2019)

    Article  MathSciNet  Google Scholar 

  22. Fu, X., Xiao, J., Xiong, Q.: Weighted Lorentz-Sobolev capacities from Caffarelli-Silvestre extensions, Submitted

  23. Gelli, M. S., Lučić, D.: A note on BV and 1-Sobolev functions on the weighted Euclidean space, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. (2023). https://doi.org/10.4171/RLM/988

  24. Giachetti, D., Oliva, F., Petitta, F.: \(1\)-Laplacian type problems with strongly singular nonlinearities and gradient terms. Commun. Contemp. Math. 24, 10 (2022)

    Article  MathSciNet  Google Scholar 

  25. Hauer, D., Mazón, J.M.: The Dirichlet-to-Neumann operator associated with the \(1\)-Laplacian and evolution problems. Calc. Var. 61, 37 (2022)

    Article  MathSciNet  Google Scholar 

  26. Kawohl, B.: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1–22 (1990)

    MathSciNet  Google Scholar 

  27. Kawohl, B.: From \(p\)-Laplace to mean curvature operator and related questions. In: Chipot, M., Shafrir, I. (eds.) Progress in Partial Differential Equations: The Metz Surveys, Pitman Research Notes in Mathe- matics Series, vol. 249, pp. 40–56. Longman Sci. Tech, Harlow (1991)

    Google Scholar 

  28. Klimsiak, T.: On uniqueness and structure of renormalized solutions to integro-differential equations with general measure data. Nonlinear Differ. Equ. Appl. 27, 47 (2020)

    Article  MathSciNet  Google Scholar 

  29. Lahti, P., Shanmugalingam, N.: Trace theorems for functions of bounded variation in metric spaces. J. Funct. Anal. 274, 2754–2791 (2018)

    Article  MathSciNet  Google Scholar 

  30. Latorre, M., Segura de León, S.: Elliptic \(1\)-Laplacian equations with dynamical boundary conditions. J. Math. Anal. Appl. 464, 1051–1081 (2018)

    Article  MathSciNet  Google Scholar 

  31. Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 105. American Mathematical Society, Providence, RI (2009)

    Google Scholar 

  32. Mercaldo, A., Rossi, J.D., Segura de Leon, S., Trombetti, C.: Behaviour of \(p\)-Laplacian problems with Neumann boundary conditions when \(p\) goes to \(1\), Commun. Pure. Appl. Anal. 12, 253–267 (2013)

    MathSciNet  Google Scholar 

  33. Mercaldo, A., Segura de León, S., Trombetti, C.: On the Behaviour of the solutions to \(p\)-Laplacian equations as \(p\) goes to \(1\). Publ. Mat. 52, 377–411 (2008)

    Article  MathSciNet  Google Scholar 

  34. Mercaldo, A., Segura de León, S., Trombetti, C.: On the solutions to \(1\)-Laplacian equation with \(L^1\) data. J. Funct. Anal. 256, 2387–2416 (2009)

    Article  MathSciNet  Google Scholar 

  35. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. American Mathematical Society, Providence (2001)

    Book  Google Scholar 

  36. Molino Salas, A., Segura de Leon, S.: Elliptic equations involving the 1-Laplacian and a subcritical source term. Nonlinear Anal. 168, 50-66 (2018)

  37. Moradifam, A.: Least gradient problems with Neumann boundary condition. J. Differ. Equ. 263, 7900–7918 (2017)

    Article  MathSciNet  Google Scholar 

  38. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  39. Rakotoson, J.M.: Generalized solutions in a new type of sets for problems with measure as data. Differ. Integral Equ. 6, 27–36 (1993)

    MathSciNet  Google Scholar 

  40. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  41. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  42. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  43. Wei, W., Zhou, B.: A \(p\)-Laplace equation model for image denoising. Information Technology Journal 11, 632–636 (2012)

    Article  Google Scholar 

  44. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics 120. Springer Verlag, Berlin (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Xiong.

Ethics declarations

Conflict of interest

We confirm that we do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project was completed during the research stays of the 1st & 3rd authors under supervision of the 2nd author at Memorial University with the support of: National Natural Science Foundation of China (Grant Nos. 11701160, 11871100, 12071229); NSERC of Canada (#202979); MUN’s SBM-Fund (#214311); Tianjin postgraduate research and innovation project (Grant No. 2021YJSB016); China Scholarship Council (Grant Nos. 202108420099, 202006200119).

Appendix A

Appendix A

This appendix is a weighted version of the Appendix in [34].

1.1 A.1. The Pairing \((z,\nabla u)\) and the Gauss-Green Formula

We first recall some notions and notation from [34, Appendix A.1]. Let \(u\in BV(\Omega )\cap L^{\infty }(\Omega )\) & \(z\in {{\mathcal {D}}}{{\mathcal {M}}}^\infty (\Omega )\). Setting \(\mu :=\textrm{div}(z)\), the distribution \((z,\nabla u)\) is defined by

$$\begin{aligned} \left\langle (z,\nabla u),\phi \right\rangle :=-\int _\Omega u(x)\phi (x)\,d\mu (x) -\int _{\Omega }u(x)z(x)\cdot \nabla \phi (x)\,dx, \quad \forall \,\phi \in C_c^\infty (\Omega ). \end{aligned}$$

The following Gauss-Green’s formula is taken from [5, Proposition 1.3].

Theorem A.1

Let \(z\in {{\mathcal {D}}}{{\mathcal {M}}}^\infty (\Omega )\), \(u\in BV(\Omega )\cap L^{\infty }(\Omega )\) & \(\mu =\textrm{div}(z)\). Then

$$\begin{aligned} \int _\Omega u(x)\,d\mu (x)+\int _\Omega z(x)\cdot \nabla u(x)\,dx =\int _{\partial \Omega }[z,\nu ](x)u(x)\,d{{\mathcal {H}}}^{n-1}(x). \end{aligned}$$

1.2 A.2 The Measures \((wz_k,\nabla T_k(u))\) & \((wz_k,\nabla 1_{\{|u|>k\}})\)

In this subsection, following some ideas from [34, Appendix A.2], we investigate the properties of the distributions in (1.13), (1.14) and (3.12).

Proposition A.2

The distribution \((wz,\nabla T_k(u))\) in (3.12) is a Radon measure.

Proof

Let \(u_p\) be the renormalized solution to problem (1.1). By some arguments used in Step 5 of the proof of Theorem 1.15, we obtain

$$\begin{aligned}&\int _{\{|u_p|<k\}}\left| \nabla u_p(x)\right| ^p\phi (x)w(x)\,dx\\&\qquad +\int _{\Omega }T_k(u_p(x))\left| \nabla u_p(x)\right| ^{p-2}\nabla u_p(x)\cdot \nabla \phi (x)w(x)\,dx\\&\hspace{0.25cm}=\int _\Omega T_k(u_p(x))f(x)\phi (x)w(x)\,dx. \end{aligned}$$

Letting \(p\rightarrow 1\) in the above equation, we conclude

$$\begin{aligned}&\lim _{p\rightarrow 1}\int _{\{|u_p|<k\}}\left| \nabla u_p(x)\right| ^p\phi (x)w(x)\,dx\nonumber \\&\hspace{0.25cm}=\int _\Omega T_k(u(x))f(x)\phi (x)w(x)\,dx -\int _{\Omega }T_k(u(x))z(x)\cdot \nabla \phi (x)w(x)\,dx\nonumber \\&\hspace{0.25cm}=\left\langle (wz,\nabla T_k(u)),\phi \right\rangle . \end{aligned}$$
(A.1)

Moreover, we notice that

$$\begin{aligned} \left| \int _{\{|u_p|<k\}}\left| \nabla u_p(x)\right| ^p\phi (x)w(x)\,dx\right|&\le \Vert \phi \Vert _{L^{\infty }(\Omega )}\int _{\Omega }\left| \nabla T_k(u_p(x))\right| ^pw(x)\,dx\\&=\Vert \phi \Vert _{L^{\infty }(\Omega )}\int _{\Omega }f(x)T_k(u_p(x))w(x)\,dx\\&\le \Vert \phi \Vert _{L^{\infty }(\Omega )}k\int _{\Omega }|f(x)|w(x)\,dx, \end{aligned}$$

which implies

$$\begin{aligned} \left| \left\langle \left( wz,\nabla T_k(u)\right) ,\phi \right\rangle \right| \le \Vert \phi \Vert _{L^{\infty }(\Omega )}k\int _{\Omega }|f(x)|w(x)\,dx, \end{aligned}$$

as desired. \(\square \)

Remark A.3

In the same way, we may define the distribution \((wz,\nabla h(u))\) for any Lipschitz function h on \({{\mathbb {R}}}\) such that the support of its derivative is compact, namely, for any \(\phi \in C_c^\infty (\Omega )\),

$$\begin{aligned} \left\langle \left( zw,\nabla h(u)\right) ,\phi \right\rangle :=\int _\Omega f(x)h(u(x))\phi (x)w(x)\,dx -\int _\Omega h(u(x))z(x)\cdot \nabla \phi (x)w(x)\,dx. \end{aligned}$$

Following the proof of Proposition A.2, we know that \((z,\nabla h(u))\) is a Radon measure, which implies that, for any \(k\in (0,\infty )\) & \(\eta \in [0,\infty )\),

$$ \begin{aligned} \left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) \quad \& \quad \left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^-\right) \end{aligned}$$

are Radon measures satisfying

$$\begin{aligned} {\left\{ \begin{array}{ll} |\langle (wz,\nabla T_k(u-T_\eta (u))^+),\phi \rangle | \le \Vert \phi \Vert _{L^{\infty }(\Omega )}k\int _{\{u\ge \eta \}}|f(x)|w(x)\,dx;\\ |\langle (wz,\nabla T_k(u-T_\eta (u))^-),\phi \rangle | \le \Vert \phi \Vert _{L^{\infty }(\Omega )}k\int _{\{-u\ge \eta \}}|f(x)|w(x)\,dx, \end{array}\right. } \end{aligned}$$

respectively.

Proposition A.4

The Radon measures

$$ \begin{aligned} \left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) \quad \& \quad \left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^-\right) \end{aligned}$$

are, respectively, concentrated on the sets

$$ \begin{aligned} \left\{ x\in \Omega :\ \eta \le u(x)\le k+\eta \right\} \quad \& \quad \left\{ x\in \Omega :\ \eta \le -u(x)\le k+\eta \right\} . \end{aligned}$$

In particular, when \(\eta =0\), the Radon measure \((wz,\nabla T_k(u))\) is concentrated on the set \(\{|u|\le k\}\).

Proof

Due to the similarity, we only prove that \((wz,\nabla T_k(u-T_\eta (u))^+)\) is concentrated on the set \(\{\eta \le u\le k+\eta \}\). To this end, it suffices to show that, for any open set \(U\Subset \Omega \) (namely, \(\overline{U}\) is compact in \(\Omega \)),

$$\begin{aligned}&\left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) \left( U\cap \{u>k+\eta \}\right) =0\\&\quad =\left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) \left( U\cap \{u<\eta \}\right) . \end{aligned}$$

Fix \(U\Subset \Omega \) and denote by \(\{\rho _m\}_{m\in {{\mathbb {N}}}}\) a sequence of mollifiers. Define

$$ \begin{aligned} z_m:=\rho _m*(zw)\quad \& \quad f_m:=\rho _m*(fw). \end{aligned}$$

Then

$$\begin{aligned} {\left\{ \begin{array}{ll} f_m=-\textrm{div}(wz_m)\quad \textrm{in}\ \ U,\quad &{}\mathrm{for\ large\ \ }m;\\ z_m\rightarrow zw\quad \textrm{in}\ \ L^1(U;{{{{\mathbb {R}}}}^n}), \quad &{}\mathrm{as\ \ }m\rightarrow \infty ;\\ f_m\rightarrow fw\quad \textrm{in}\ \ L^1(U), \quad &{}\mathrm{as\ \ }m\rightarrow \infty . \end{array}\right. } \end{aligned}$$

By the result [5, Corollary 1.6], we obtain

$$\begin{aligned}&\int _{U\cap \{u>k+\eta \}}\,d\left| \left( z_m,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) \right| \\&\hspace{0.25cm}\le \big \Vert |z_m|\big \Vert _{L^{\infty }(\Omega )}\left| \nabla T_k\left( u-T_\eta (u)\right) ^+\right| \left( U\cap \left\{ u>k+\eta \right\} \right) \\&\hspace{0.25cm}\le \Vert \rho _m\Vert _{L^{\infty }(\Omega )}\Vert wz\Vert _{L^1(\Omega )}\left| \nabla T_k\left( u-T_\eta (u)\right) ^+\right| \left( U\cap \left\{ u>k+\eta \right\} \right) , \end{aligned}$$

which, combined with the fact that

$$\begin{aligned} \left| \nabla T_k\left( u-T_\eta (u)\right) ^+\right| \left( \left\{ u>k+\eta \right\} \right) =0, \end{aligned}$$

further shows

$$\begin{aligned} \int _{U\cap \{u>k+\eta \}}\,d\left( z_m,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) =0,\quad \forall \,m\in {{\mathbb {N}}}. \end{aligned}$$

Similarly, we have

$$\begin{aligned} \int _{U\cap \{u<\eta \}}\,d\left( z_m,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) =0,\quad \forall \,m\in {{\mathbb {N}}}. \end{aligned}$$

Moreover, we observe that, for any \(\phi \in C_c^\infty (U)\),

$$\begin{aligned}&\left| \int _U T_k\left( u-T_\eta (u)\right) ^+ w(x)z\cdot \nabla \phi \,dx\right| \\&\hspace{0.25cm}\le \left| \left\langle \left( wz,\nabla T_k(u-T_\eta (u))^+\right) ,\phi \right\rangle \right| +\left| \int _U T_k\left( u(x)-T_\eta (u(x))\right) ^+f(x)\phi (x)w(x)\,dx\right| \\&\hspace{0.25cm}\le 2\Vert \phi \Vert _{L^{\infty }(\Omega )}k\int _{\{u\ge \eta \}}|f(x)|\,dx, \end{aligned}$$

which, together with the fact that

$$\begin{aligned} \int _U T_k\left( u-T_\eta (u)\right) ^+ w(x)z\cdot \nabla \phi (x)\,dx =\lim _{m\rightarrow \infty }\int _U T_k\left( u-T_\eta (u)\right) ^+ w(x)z_m\cdot \nabla \phi (x)\,dx \end{aligned}$$
(A.2)

implies

$$\begin{aligned} \left| \int _U T_k\left( u-T_\eta (u)\right) ^+ w(x)z_m\cdot \nabla \phi (x)\,dx\right| \le 3\Vert \phi \Vert _{L^{\infty }(\Omega )}k\int _{\{u\ge \eta \}}|f(x)|w(x)\,dx. \end{aligned}$$

From this and the fact that

$$\begin{aligned} \int _U T_k\left( u-T_\eta (u)\right) ^+ f_m(x)\phi (x)\,dx =\int _U T_k\left( u-T_\eta (u)\right) ^+ w(x)z_m\cdot \nabla \phi \,dx \end{aligned}$$
(A.3)

we deduce that, for large m,

$$\begin{aligned}&\left| \left\langle \left( z_m,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) ,\phi \right\rangle \right| \\&\hspace{0.25cm}\le \left| \int _U T_k\left( u-T_\eta (u)\right) ^+ w(x)z_m\cdot \nabla \phi (x)\,dx\right| \\&\qquad +\left| \int _U T_k\left( u(x)-T_\eta (u(x))\right) ^+f_m(x)\phi (x)w(x)\,dx\right| \\&\hspace{0.25cm}\le 5\Vert \phi \Vert _{L^{\infty }(\Omega )}k\int _{\{u\ge \eta \}}|f(x)|w(x)\,dx. \end{aligned}$$

Furthermore, by (A.2) and (A.3), we know that, when \(m\rightarrow \infty \),

$$\begin{aligned}&\left( z_m,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) \mid _U\rightarrow \left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) \mid _U,\\&\qquad \qquad \qquad \qquad \qquad *-\mathrm{weakly\ as\ measures}. \end{aligned}$$

Thus,

$$\begin{aligned} {\left\{ \begin{array}{ll} \int _{U\cap \{u>k+\eta \}}\,d\left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) (x)\\ \qquad =\displaystyle \lim _{m\rightarrow \infty }\int _{U\cap \{u>k+\eta \}}\,d\left( z_m,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) (x)=0;\\ \int _{U\cap \{u<\eta \}}\,d\left( wz,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) (x)\\ \qquad =\displaystyle \lim _{m\rightarrow \infty }\int _{U\cap \{u<\eta \}}\,d\left( z_m,\nabla T_k\left( u-T_\eta (u)\right) ^+\right) (x)=0, \end{array}\right. } \end{aligned}$$

as desired. \(\square \)

Corollary A.5

For any \(\epsilon \in (0,\infty )\), the Radon measures

$$ \begin{aligned} \left( wz,\nabla T_\epsilon \left( u-T_k(u)\right) ^+\right) \quad \& \quad \left( wz,\nabla T_\epsilon \left( u-T_k(u)\right) ^-\right) \end{aligned}$$

are, respectively, concentrated on the sets

$$ \begin{aligned} \left\{ x\in \Omega :\ k\le u(x)\le k+\epsilon \right\} \quad \& \quad \left\{ x\in \Omega :\ k\le -u(x)\le k+\epsilon \right\} . \end{aligned}$$

Proposition A.6

Let \((wz,\nabla 1_{\{u>k\}})\) & \((wz,\nabla 1_{\{-u>k\}})\) be the Radon measures defined in (3.10) and (3.11), respectively. Then, for any \(\phi \in C_c^\infty (\Omega )\),

$$\begin{aligned} {\left\{ \begin{array}{ll} \left\langle \left( wz,\nabla 1_{\{u>k\}}\right) ,\phi \right\rangle =\lim _{\epsilon \rightarrow 0}\epsilon ^{-1}\left\langle \left( wz,\nabla T_\epsilon \left( u-T_k(u)\right) ^+\right) , \phi \right\rangle ;\\ \left\langle \left( wz,\nabla 1_{\{-u>k\}}\right) ,\phi \right\rangle =\lim _{\epsilon \rightarrow 0}\frac{-1}{\epsilon }\left\langle \left( wz,\nabla T_\epsilon \left( u-T_k(u)\right) ^-\right) . \phi \right\rangle \end{array}\right. } \end{aligned}$$

Moreover,

$$ \begin{aligned} \left( wz,\nabla 1_{\{u>k\}}\right) \quad \& \quad \left( wz,\nabla 1_{\{-u>k\}}\right) \end{aligned}$$

are, respectively, concentrated on

$$ \begin{aligned} \{u=k\}\quad \& \quad \{-u=k\}. \end{aligned}$$

As a consequence, the Radon measure

$$\begin{aligned} \left( wz,\nabla 1_{\{|u|>k\}}\right) \quad \mathrm{is\ concentrated\ on\ \ } \{|u|=k\}. \end{aligned}$$
(A.4)

Proof

Let \(\phi \in C_c^\infty (\Omega )\) and let \(u_p\) be the renormalized solution to the problem (1.12). From some arguments used in Step 4 of the proof of Theorem 1.15, we deduce

$$\begin{aligned}&-\epsilon ^{-1}\int _{\{k\le u_p<k+\epsilon \}} \left| \nabla u_p(x)\right| ^p\phi (x)w(x)\,dx\nonumber \\&\hspace{0.25cm}=\epsilon ^{-1}\int _\Omega f(x)T_\epsilon \left( u_p(x)-T_k(u_p(x))\right) ^+\phi (x)w(x)\,dx\nonumber \\&\hspace{0.25cm}\hspace{0.25cm}-\epsilon ^{-1}\int _\Omega T_\epsilon \left( u_p(x)-T_k(u_p(x))\right) ^+ \left| \nabla u_p(x)\right| ^{p-2}\nabla u_p(x)\cdot \nabla \phi (x)w(x)\,dx. \end{aligned}$$
(A.5)

Letting \(p\rightarrow 1\) and \(\epsilon \rightarrow 0\) in (A.5), we have

$$\begin{aligned} \lim _{p\rightarrow 1}-\epsilon ^{-1}\int _{\{k\le u_p<k+\epsilon \}} \left| \nabla u_p(x)\right| ^p\phi (x)w(x)\,dx =\epsilon ^{-1}\left\langle \left( wz,\nabla T_\epsilon \left( u-T_k(u)\right) ^+\right) ,\phi \right\rangle \end{aligned}$$
(A.6)

and

$$\begin{aligned} \lim _{\epsilon \rightarrow 0}\lim _{p\rightarrow 1}-\epsilon ^{-1}\int _{\{k\le u_p<k+\epsilon \}} \left| \nabla u_p(x)\right| ^p\phi (x)w(x)\,dx =\left\langle \left( wz,\nabla {\textbf {1}}_{\{u>k\}}\right) ,\phi \right\rangle . \end{aligned}$$

By this and (A.6), we obtain

$$\begin{aligned} \left\langle \left( wz,\nabla {\textbf {1}}_{\{u>k\}}\right) ,\phi \right\rangle =\lim _{\epsilon \rightarrow 0}\epsilon ^{-1}\left\langle \left( wz,\nabla T_\epsilon \left( u-T_k(u)\right) ^+\right) ,\phi \right\rangle , \end{aligned}$$

which, combined with Corollary A.5, implies that the measure \((wz,\nabla 1_{\{u>k\}})\) is concentrated on the set

$$\begin{aligned} \bigcap _{m=1}\left\{ k\le u\le k+m^{-1}\right\} =\{u=k\}. \end{aligned}$$

Similarly, we can also obtain the desired result for the measure \((wz,\nabla {\textbf {1}}_{\{-u>k\}})\).

As a consequence of

$$\begin{aligned} (wz,\nabla {\textbf {1}}_{\{|u|>k\}}) =(wz,\nabla {\textbf {1}}_{\{u>k\}})+(wz,\nabla {\textbf {1}}_{\{-u>k\}}), \end{aligned}$$

(A.4) holds. \(\square \)

1.3 A.3 Weighted Weak Trace on \(\partial \Omega \) of the Normal Component of z

In this subsection, we define \([wz,\nu ]\), which is called the weighted weak trace on \(\partial \Omega \) of the normal component of z. Recall that

$$ \begin{aligned} z\in L_w^{\frac{n}{n-1},\infty }(\Omega ;{{{{\mathbb {R}}}}^n})\quad \& \quad -w^{-1}\textrm{div}(wz)=f\quad \textrm{in}\quad \left( C_c^\infty (\Omega )\right) '. \end{aligned}$$

Let \(v\in W_w^{1-\frac{1}{q},q}(\partial \Omega )\cap L^\infty (\partial \Omega )\) for some \(q>N\). Then there exists

$$\begin{aligned} V\in W_w^{1,q}(\Omega )\cap L^{\infty }(\Omega )\end{aligned}$$

such that \(V\mid _{\partial \Omega }=v\).

Proposition A.7

Define

$$\begin{aligned} \left\langle wz,v\right\rangle _{\partial \Omega } :=\int _\Omega z(x)\nabla V(x)w(x)\,dx -\int _{\Omega }f(x)V(x)w(x)\,dx. \end{aligned}$$
(A.7)
  1. (i)

    The value \(\langle wz,v\rangle _{\partial \Omega }\) defined in (A.7) is independent of the choice of the function V;

  2. (ii)

    for any \(q\in (N,\infty )\), the linear map \(\langle wz,\cdot \rangle _{\partial \Omega }\) on

    $$\begin{aligned} W_w^{1-\frac{1}{q},q}(\partial \Omega )\cap L^\infty (\partial \Omega )\quad \mathrm{is\ continuous\ in\ \ } W_w^{1-\frac{1}{q},q}(\partial \Omega ). \end{aligned}$$

We write

$$\begin{aligned} \int _{\partial \Omega }\left[ wz,\nu \right] (x)v(x)\,d{{\mathcal {H}}}^{n-1}(x) \end{aligned}$$

instead of \(\langle wz,v\rangle _{\partial \Omega }\).

Now we define

$$ \begin{aligned} \int _{\partial \Omega }\left[ wz{\textbf {1}}_{\{u=\infty \}},\nu \right] (x)v(x)\,d{{\mathcal {H}}}^{n-1}(x) \quad \& \quad \int _{\partial \Omega }\left[ wz{\textbf {1}}_{\{u=-\infty \}},\nu \right] (x)v(x)\,d{{\mathcal {H}}}^{n-1}(x). \end{aligned}$$

It is easy to verify that

$$\begin{aligned} {\left\{ \begin{array}{ll} -\textrm{div}(wz{\textbf {1}}_{\{u=\infty \}})=wf{\textbf {1}}_{\{u=\infty \}}- (wz,\nabla {\textbf {1}}_{\{u=\infty \}});\\ -\textrm{div}(wz{\textbf {1}}_{\{u=-\infty \}})=wf{\textbf {1}}_{\{u=-\infty \}}- (wz,\nabla {\textbf {1}}_{\{u=-\infty \}});\\ -\textrm{div}(wz{\textbf {1}}_{\{|u|<\infty \}})=wf{\textbf {1}}_{\{|u|<\infty \}}- (wz,\nabla {\textbf {1}}_{\{|u|=\infty \}})\\ \end{array}\right. } \end{aligned}$$

hold in the sense of distributions, where, for any \(\phi \in C_c^\infty (\Omega )\),

$$\begin{aligned} \left\langle \left( wz,\nabla {\textbf {1}}_{\{|u|=\infty \}}\right) ,\phi \right\rangle :=\int _{\{|u|=\infty \}}f(x)\phi (x)w(x)\,dx -\int _{\{|u|=\infty \}}z(x)\cdot \nabla \phi (x)w(x)\,dx, \end{aligned}$$
$$ \begin{aligned} \left\langle \left( wz,\nabla {\textbf {1}}_{\{u=\infty \}}\right) ,\phi \right\rangle \quad \& \quad \left\langle \left( wz,\nabla {\textbf {1}}_{\{u=-\infty \}}\right) ,\phi \right\rangle \end{aligned}$$

are similar to define.

Then we may write

$$\begin{aligned}&\int _\Omega \left[ wz{\textbf {1}}_{\{u=\infty \}},\nu \right] (x)v(x)w(x)\,d{{\mathcal {H}}}^{n-1}(x)\\&\quad =\int _{\Omega }w(x)z(x){\textbf {1}}_{\{u=\infty \}}\cdot \nabla V(x)\,dx-\int _{\{u=\infty \}}f(x)V(x)w(x)\,dx\\&\qquad +\int _{\Omega }V(x)\,d\left( wz,\nabla {\textbf {1}}_{\{u=\infty \}}\right) \end{aligned}$$

and

$$\begin{aligned}&\int _\Omega \left[ wz{\textbf {1}}_{\{u=-\infty \}},\nu \right] (x)v(x)w(x)\,d{{\mathcal {H}}}^{n-1}(x)\\&\quad =\int _{\Omega }w(x)z(x){\textbf {1}}_{\{u=-\infty \}}\cdot \nabla V(x)\,dx-\int _{\{u=-\infty \}}f(x)V(x)w(x)\,dx\\&\qquad +\int _{\Omega }V(x)\,d\left( wz,\nabla {\textbf {1}}_{\{u=-\infty \}}\right) . \end{aligned}$$

Moreover, we have, for any

$$\begin{aligned}&v\in W^{1-\frac{1}{q},q}_w(\partial \Omega )\cap L^\infty (\partial \Omega )\quad \textrm{with}\ \ q\in (n,\infty ), \\&\int _{\partial \Omega }\left[ wz,\nu \right] (x)v(x)\,d{{\mathcal {H}}}^{n-1}(x) =\int _{\partial \Omega }\left[ wz{\textbf {1}}_{\{|u|<\infty \}},\nu \right] (x)v(x)w(x)\,d{{\mathcal {H}}}^{n-1}(x)\\&\hspace{0.25cm}+\int _{\partial \Omega }\left[ wz{\textbf {1}}_{\{u=\infty \}},\nu \right] (x)v(x)w(x)\,d{{\mathcal {H}}}^{n-1}(x)\\&\hspace{0.25cm}+\int _{\partial \Omega }\left[ wz{\textbf {1}}_{\{u=-\infty \}},\nu \right] (x)v(x)w(x)\,d{{\mathcal {H}}}^{n-1}(x). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Xiao, J. & Xiong, Q. Dirichlet or Neumann Problem for Weighted 1-Laplace Equation with Application to Image Denoising. J Geom Anal 34, 32 (2024). https://doi.org/10.1007/s12220-023-01483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01483-8

Keywords

Mathematics Subject Classification

Navigation