Skip to main content
Log in

The Coulomb Gauge in Non-associative Gauge Theory

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The aim of this paper is to extend existence results for the Coulomb gauge from standard gauge theory to a non-associative setting. Non-associative gauge theory is based on smooth loops, which are the non-associative analogs of Lie groups. The main components of the theory include a finite-dimensional smooth loop\({\mathbb {L}}\), its tangent algebra \({\mathfrak {l}},\) a finite-dimensional Lie group \(\Psi \), that is the pseudoautomorphism group of \({\mathbb {L}}\), a smooth manifold M with a principal \(\Psi \)-bundle \({\mathcal {P}}\), and associated bundles \({\mathcal {Q}}\) and\({\mathcal {A}}\) with fibers \({\mathbb {L}}\) and \({\mathfrak {l}}\), respectively. A configuration in this theory is defined as a pair \(\left( s,\omega \right) \), where s is a section of \({\mathbb {Q}}\) and \(\omega \) is a connection on \({\mathcal {P}}\). The torsion \(T^{\left( s,\omega \right) }\) is the key object in the theory, with a role similar to that of a connection in standard gauge theory. The original motivation for this study comes from \(G_{2}\)-geometry, and the questions of existence of \(G_{2}\)-structures with particular torsion types. In particular, given a fixed connection, we prove existence of configurations with divergence-free torsion, given a sufficiently small torsion in a Sobolev norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Not available.

References

  1. Agricola, I., Chiossi, S.G., Friedrich, T., Höll, J.: Spinorial description of \({{\rm SU}}(3)\)- and \({{\rm G}}_2\)-manifolds. J. Geom. Phys. 98, 535–555 (2015)

    Article  MathSciNet  Google Scholar 

  2. Baez, J.: The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002). https://doi.org/10.1090/S0273-0979-01-00934-X

    Article  MathSciNet  Google Scholar 

  3. Bagaglini, L.: The energy functional of \(G_2\)-structures compatible with a background metric. J. Geom. Anal. 31(1), 346–365 (2021). https://doi.org/10.1007/s12220-019-00264-6

    Article  MathSciNet  Google Scholar 

  4. Bagaglini, L., Fernández, M., Fino, A.: Laplacian coflow on the 7-dimensional Heisenberg group. Asian J. Math. 24(2), 331–354 (2020). https://doi.org/10.4310/AJM.2020.v24.n2.a7

    Article  MathSciNet  Google Scholar 

  5. Bagaglini, L., Fino, A.: The Laplacian coflow on almost-abelian Lie groups. Ann. Mat. Pura Appl. 197(6), 1855–1873 (2018). https://doi.org/10.1007/s10231-018-0753-9

    Article  MathSciNet  Google Scholar 

  6. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. 126(3), 525–576 (1987). https://doi.org/10.2307/1971360

    Article  MathSciNet  Google Scholar 

  7. Bryant, R.L.: Some remarks on \({G}_2\)-structures. In: Proceedings of Gökova Geometry-Topology Conference (2005), pp. 75–109. Gökova Geometry/Topology Conference (GGT), Gökova, (2006)

  8. Bryant, R.L., Xu, F.: Laplacian Flow for Closed \(G_2\)-Structures: Short Time Behavior (2011). arXiv:1101.2004

  9. Chen, G.: Shi-type estimates and finite-time singularities of flows of \({{\rm G}}_2\) structures. Q. J. Math. 69(3), 779–797 (2018). https://doi.org/10.1093/qmath/hax060

    Article  MathSciNet  Google Scholar 

  10. Donaldson, S.K.: Gauge theory: mathematical applications. In: Encyclopedia of Mathematical Physics, pp. 468–481. Academic Press/Elsevier Science, Oxford (2006)

  11. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1990)

  12. Dwivedi, S., Gianniotis, P., Karigiannis, S.: A gradient flow of isometric \(G_2\)-structures. J. Geom. Anal. 31(2), 1855–1933 (2021). https://doi.org/10.1007/s12220-019-00327-8

    Article  MathSciNet  Google Scholar 

  13. Fadel, D., Loubeau, E., Moreno, A.J., Earp, H.N.S.: Flows of geometric structures (2022). arXiv:2211.05197

  14. Feehan, P.M.N.: Critical-exponent Sobolev norms and the slice theorem for the quotient space of connections. Pac. J. Math. 200(1), 71–118 (2001). https://doi.org/10.2140/pjm.2001.200.71

    Article  MathSciNet  Google Scholar 

  15. Feehan, P.M.N.: Energy gap for Yang-Mills connections, II. Arbitrary closed Riemannian manifolds. Adv. Math. 312, 547–587 (2017). https://doi.org/10.1016/j.aim.2017.03.023

    Article  MathSciNet  Google Scholar 

  16. Feehan, P.M.N.: Morse theory for the Yang-Mills energy function near flat connections (2019). arXiv:1906.03954

  17. Feehan, P.M.N., Maridakis, M.: Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functionals. Mem. Am. Math. Soc. 267, 1302 (2020). https://doi.org/10.1090/memo/1302

    Article  Google Scholar 

  18. Fernández, M., Gray, A.: Riemannian manifolds with structure group \(G_{2}\). Ann. Mat. Pura Appl. 4(132), 19–45 (1982)

    Article  Google Scholar 

  19. Friedrich, T., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel \(G_2\)-structures. J. Geom. Phys. 23(3–4), 259–286 (1997)

    Article  MathSciNet  Google Scholar 

  20. Gray, A.: Vector cross products on manifolds. Trans. Am. Math. Soc. 141, 465–504 (1969)

    Article  MathSciNet  Google Scholar 

  21. Grigorian, S.: Short-time behaviour of a modified Laplacian coflow of G2-structures. Adv. Math. 248, 378–415 (2013). https://doi.org/10.1016/j.aim.2013.08.013

    Article  MathSciNet  Google Scholar 

  22. Grigorian, S.: Deformations of \(G_2\)-structures with torsion. Asian J. Math. 20(1), 123–155 (2016). https://doi.org/10.4310/AJM.2016.v20.n1.a6

    Article  MathSciNet  Google Scholar 

  23. Grigorian, S.: Modified Laplacian coflow of \(G_2\)-structures on manifolds with symmetry. Differ. Geom. Appl. 46, 39–78 (2016)

    Article  MathSciNet  Google Scholar 

  24. Grigorian, S.: \({G}_2\)-structures and octonion bundles. Adv. Math. 308, 142–207 (2017). https://doi.org/10.1016/j.aim.2016.12.003

    Article  MathSciNet  Google Scholar 

  25. Grigorian, S.: Estimates and monotonicity for a heat flow of isometric \(G_2\)-structures. Calc. Var. Partial Differ. Equ. 58(5), 175 (2019). https://doi.org/10.1007/s00526-019-1630-0

    Article  MathSciNet  Google Scholar 

  26. Grigorian, S.: Smooth loops and loop bundles. Adv. Math. 393, 108078 (2021). https://doi.org/10.1016/j.aim.2021.108078

    Article  MathSciNet  Google Scholar 

  27. Grigorian, S.: Isometric flows of \(G_2\)-structures. In: Cerejeiras, P., Reissig, M., Sabadini, I., Toft, J. (eds.) Current Trends in Analysis, its Applications and Computation, pp. 545–553. Springer, Cham (2022)

    Chapter  Google Scholar 

  28. Hitchin, N.J.: The geometry of three-forms in six dimensions. J. Differ. Geom. 55(3), 547–576 (2000)

    Article  MathSciNet  Google Scholar 

  29. Hofmann, K.H., Strambach, K.: Topological and analytic loops. In: Quasigroups and Loops: Theory and Applications, vol. 8 of Sigma Ser. Pure Math., pp. 205–262. Heldermann, Berlin (1990)

  30. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford Mathematical Monographs, Oxford (2000)

    Book  Google Scholar 

  31. Karigiannis, S.: Deformations of \({G}_2\) and \({S}pin(7)\) structures on manifolds. Can. J. Math. 57, 1012 (2005). https://doi.org/10.4153/CJM-2005-039-x

    Article  MathSciNet  Google Scholar 

  32. Karigiannis, S.: Flows of \({G}_2\)-structures, I. Q. J. Math. 60(4), 487–522 (2009). https://doi.org/10.1093/qmath/han020

    Article  MathSciNet  Google Scholar 

  33. Karigiannis, S., McKay, B., Tsui, M.-P.: Soliton solutions for the Laplacian coflow of some \(G_2\)-structures with symmetry. Differ. Geom. Appl. 30(4), 318–333 (2012). https://doi.org/10.1016/j.difgeo.2012.05.003

    Article  Google Scholar 

  34. Kiechle, H.: Theory of \(K\)-Loops, Lecture Notes in Mathematics, vol. 1778. Springer, Berlin (2002). https://doi.org/10.1007/b83276

  35. Kikkawa, M.: On Killing-Ricci forms of Lie triple algebras. Pac. J. Math. 96(1), 153–161 (1981)

    Article  MathSciNet  Google Scholar 

  36. Kuzmin, E.N.: The connection between Malcev algebras and analytic Moufang loops. Algebra Logika 10, 3–22 (1971)

    MathSciNet  Google Scholar 

  37. Loos, O.: Über eine Beziehung zwischen Malcev-Algebren und Lietripelsystemen. Pac. J. Math. 18, 553–562 (1966)

    Article  Google Scholar 

  38. Lotay, J.D., Wei, Y.: Laplacian flow for closed \(G_2\) structures: shi-type estimates, uniqueness and compactness. Geom. Funct. Anal. 27(1), 165–233 (2017). https://doi.org/10.1007/s00039-017-0395-x

    Article  MathSciNet  Google Scholar 

  39. Lotay, J.D., Wei, Y.: Laplacian flow for closed \(\rm G_2\) structures: real analyticity. Commun. Anal. Geom. 27(1), 73–109 (2019). https://doi.org/10.4310/CAG.2019.v27.n1.a3

    Article  Google Scholar 

  40. Lotay, J.D., Wei, Y.: Stability of torsion-free \(\rm G_2\) structures along the Laplacian flow. J. Differ. Geom. 111(3), 495–526 (2019). https://doi.org/10.4310/jdg/1552442608

    Article  Google Scholar 

  41. Loubeau, E., Sá Earp, H.N.: Harmonic flow of geometric structures. Ann Glob Anal Geom 64, 23 (2023). https://doi.org/10.1007/s10455-023-09928-7

    Article  MathSciNet  Google Scholar 

  42. Malcev, A.I.: Analytic loops. Mat. Sb. N.S. 36(78), 569–576 (1955)

    MathSciNet  Google Scholar 

  43. Nagy, P.T., Strambach, K.: Loops in Group Theory and Lie Theory, De Gruyter Expositions in Mathematics, vol. 35. Walter de Gruyter & Co., Berlin (2002). https://doi.org/10.1515/9783110900583

  44. Sabinin, L.V.: Smooth Quasigroups and Loops, Mathematics and its Applications, vol. 492. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  45. Sharpe, R.W.: Differential Geometry. Graduate Texts in Mathematics, vol. 166. Springer, New York (1997)

    Google Scholar 

  46. Smith, J.D.H.: An Introduction to Quasigroups and Their Representations. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  47. Uhlenbeck, K.K.: Connections with \(L^{p}\) bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982)

    Article  Google Scholar 

  48. Wehrheim, K.: Uhlenbeck Compactness. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2004)

    Book  Google Scholar 

  49. Yau, S.-T.: On the Ricci curvature of a compact Kaehler manifold and the complex Monge-Ampère equation I. Commun. Pure Appl. Math. 31, 339–411 (1978). https://doi.org/10.1002/cpa.3160310304

    Article  Google Scholar 

Download references

Acknowledgements

The author is supported by the National Science Foundation Grant DMS-1811754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Grigorian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1

Let k\(k^{\prime },n\) be positive integers and \(kp>n\), for a positive real number p,  and let \(A_{1},\ldots ,A_{k^{\prime }}\) be real-valued functions on a compact n-dimensional Riemannian manifold M. Also, suppose \(m_{1},\ldots ,m_{k^{\prime }}\) are non-negative integers and \( q_{1},\ldots ,q_{k^{\prime }}\) are positive integers such that \( \sum _{j=1}^{k^{\prime \prime }}q_{j}m_{j}\le k,\) then

$$\begin{aligned} \left\| \prod _{j=1}^{k^{\prime }}A_{j}^{m_{j}}\right\| _{L^{p}}\lesssim \prod _{j=1}^{k^{\prime }}\left\| A_{j}\right\| _{W^{k-q_{j},p}}^{m_{j}}. \end{aligned}$$
(A.1)

Proof

Let \(k^{\prime \prime }=\sum _{j=1}^{k^{\prime \prime }}q_{j}m_{j}\le k.\) Then suppose \(p_{j}=\frac{pk^{\prime \prime }}{q_{j}m_{j}}\) for all j for which \(m_{j}>0,\) so that \(\frac{1}{p_{j}}=\frac{q_{j}m_{j}}{pk^{\prime \prime }},\) and hence \(\sum _{j=1}^{k^{\prime }}\frac{1}{p_{j}}=\frac{1}{p}.\) Thus, from Hölder’s inequality, we have

$$\begin{aligned} \left\| \prod _{j=1}^{k^{\prime }}A_{j}^{m_{j}}\right\| _{L^{p}}\lesssim \prod _{j=1}^{k^{\prime }}\left\| A_{j}\right\| _{L^{m_{j}p_{j}}}^{m_{j}}. \end{aligned}$$

Now note that using the definition of \(p_{j}\), \(\frac{q_{j}}{k^{\prime \prime }}=\frac{p}{p_{j}m_{j}}\le 1,\) and hence

$$\begin{aligned} \frac{k-q_{j}}{n}= & {} \frac{k}{n}\left( 1-\frac{q_{j}}{k}\right) \\\ge & {} \frac{k}{n}\left( 1-\frac{q_{j}}{k^{\prime \prime }}\right) \\= & {} \frac{k}{n}\left( 1-\frac{p}{p_{j}m_{j}}\right) . \end{aligned}$$

Since by assumption, \(\frac{k}{n}>\frac{1}{p}\), we obtain

$$\begin{aligned} \frac{k-q_{j}}{n}>\frac{1}{p}-\frac{1}{p_{j}m_{j}}. \end{aligned}$$

Using a version of the Sobolev Embedding Theorem, this shows that indeed,

$$\begin{aligned} \left\| A_{j}\right\| _{L^{m_{j}p_{j}}}\lesssim \left\| A_{j}\right\| _{W^{k-q_{j},p}}, \end{aligned}$$

and (A.1) follows. \(\square \)

Theorem A.2

(Banach space quantitative implicit function theorem [17, Theorem F.1]) Let \(k\ge 1\) be an integer or \(\infty ,\) and let XYZ be real Banach spaces. Suppose \(U\subset X\) and \(V\subset Y\) are open neighborhoods of points \(x_{0}\in X\) and \(y_{0}\in Y\) and \(f:U\times V\longrightarrow Z\) is a \(C^{k}\) map such that \(f\left( x_{0},y_{0}\right) =0 \) and the partial derivative of f at \(\left( x_{0},y_{0}\right) \) with respect to the second variable, \(\left. \partial _{2}f\right| _{\left( x_{0},y_{0}\right) }\in {Hom}\left( Y,Z\right) \) is an isomorphism of Banach spaces. Define

$$\begin{aligned} N=\left\| \left( \left. \partial _{2}f\right| _{\left( x_{0},y_{0}\right) }\right) ^{-1}\right\| _{\mathop {\textrm{Hom}} \nolimits \left( Z,Y\right) }. \end{aligned}$$

Let \(\zeta \in (0,1]\) be small enough such that the open ball \(B_{\zeta }\left( x_{0}\right) \subset U\) and \(B_{\zeta }\left( y_{0}\right) \subset V, \) and assume

$$\begin{aligned} \sup _{\left( x,y\right) \in B_{\zeta }\left( x_{0}\right) \times B_{\zeta }\left( y_{0}\right) }\left\| \left. \partial _{2}f\right| _{\left( x,y\right) }-\left. \partial _{2}f\right| _{\left( x_{0},y_{0}\right) }\right\| _{_{\mathop {\textrm{Hom}}\nolimits \left( Y,Z\right) }}\le & {} \frac{1 }{2N} \\ \beta =\sup _{\left( x,y\right) \in B_{\zeta }\left( x_{0}\right) \times B_{\zeta }\left( y_{0}\right) }\left\| \left. \partial _{1}f\right| _{\left( x,y\right) }\right\| _{\mathop {\textrm{Hom}}\nolimits \left( X,Z\right) }< & {} \infty . \end{aligned}$$

Then there exist a constant \(\delta \in \left( 0,\min \left\{ \zeta ,\frac{ \zeta }{2\beta N}\right\} \right] \) and unique \(C^{k}\) map \(g:B_{\delta }\left( x_{0}\right) \longrightarrow B_{\zeta }\left( y_{0}\right) \) such that \(y_{0}=g\left( x_{0}\right) \) and

$$\begin{aligned} f\left( g\left( x\right) ,x\right)= & {} 0,\ \forall x\in B_{\delta }\left( x_{0}\right) \\ \left. Dg\right| _{x}= & {} -\left( \left. \partial _{2}f\right| _{\left( x,g\left( x\right) \right) }\right) ^{-1}\left. \partial _{1}f\right| _{\left( x,g\left( x\right) \right) }\in \mathop {\textrm{Hom}} \nolimits \left( X,Y\right) ,\ \forall x\in B_{\delta }\left( x_{0}\right) \\ \left\| g\left( x_{1}\right) -g\left( x_{2}\right) \right\| _{Y}\le & {} 2\beta N\left\| x_{1}-x_{2}\right\| _{X,}\ \forall x_{1},x_{2}\in B_{\delta }\left( x_{0}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorian, S. The Coulomb Gauge in Non-associative Gauge Theory. J Geom Anal 34, 7 (2024). https://doi.org/10.1007/s12220-023-01445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01445-0

Keywords

Mathematics Subject Classification

Navigation