Skip to main content
Log in

Existence and Asymptotic Behaviour for the 2D-Generalized Quasilinear Schrödinger Equations Involving Trudinger–Moser Nonlinearity and Potentials

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this work, one of the purposes is concerned with the following generalized quasilinear Schrödinger equation:

$$\begin{aligned} -\text {div}(\text {j}^2(u)\nabla u)+\text {j}(u)\text {j}'(u)|\nabla u|^2+V(x)u=g(x,u),\,\, x\in \mathbb {R}^2, \end{aligned}$$

where \(\text {j}\in \mathcal {C}^1(\mathbb {R},\mathbb {R}^{+})\), \(V: \mathbb {R}^2\rightarrow \mathbb {R}\) and \(g: \mathbb {R}^2\times \mathbb {R}\rightarrow \mathbb {R}\) satisfies Trudinger–Moser type growth. By using a change of variable, we obtain the existence of nontrivial solutions via the monotonicity condition instead of Ambrosetti–Rabinowitz condition. In addition, we intend to show the existence of nontrivial solutions for the following:

$$\begin{aligned} -\text {div}(\text {j}^2(u)\nabla u)+\text {j}(u)\text {j}'(u)|\nabla u|^2+\lambda V(x)u=Q(x)g(u),\,\, x\in \mathbb {R}^2, \end{aligned}$$

where \(\lambda \ge 1\), \(Q,V: \mathbb {R}^2\rightarrow \mathbb {R}\) and \(g: \mathbb {R}\rightarrow \mathbb {R}\) satisfies Trudinger–Moser type growth. Furthermore, the asymptotic properties of the solutions are established as \(\lambda \rightarrow +\infty \). Our results complement and extend some well-known ones showed by do Ó and Severo (Calc Var Partial Differ Eq 38:275–315, 2010), do Ó et al. (Commun Contemp Math 11:547–583, 2009), do Ó et al. (Nonlinear Anal 67:3357–3372, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Ekeland, I.: Applied nonlinear analysis. Pure and applied mathematics. Wiey, Hoboken (1984)

    MATH  Google Scholar 

  2. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R} ^N\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    MATH  Google Scholar 

  4. Bae, S., Choi, H.O., Pahk, D.H.: Existence of nodal solutions of nonlinear elliptic equations. Proc. R. Soc. Edinb. A 137, 1135–1155 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bouard, A.D., Hayashi, N., Saut, J.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189, 73–105 (1997)

    MATH  Google Scholar 

  6. Bass, F.G., Nasanov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Google Scholar 

  7. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and domain topolopy. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)

    MATH  Google Scholar 

  8. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in \(\mathbb{R} ^2\). Commun. Partial Differ. Equ. 17, 407–435 (1992)

    MATH  Google Scholar 

  9. Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Google Scholar 

  10. Cuccagna, S.: On instability of excited states of the nonlinear Schrödinger equation. Physica D 238, 38–54 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Chen, S.T., Tang, X.H.: On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity. Calc. Var. Partial Differ. Equ. 60, 1–27 (2021)

    MATH  Google Scholar 

  12. Chen, S.T., Tang, X.H.: Axially symmetric solutions for the planar Schrödinger-Poisson system with critical exponential growth. J. Differ. Equ. 269, 9144–9174 (2020)

    MATH  Google Scholar 

  13. Chen, J.H., Tang, X.H., Cheng, B.T.: Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations. Appl. Math. Lett. 74, 20–26 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Chen, J.H., Huang, X.J., Cheng, B.T., Tang, X.H.: Existence and concentration behavior of ground state solutions for a class of generalized quasilinear Schrödinger equations in \(\mathbb{R} ^N\). Acta Math. Sci. 40, 1495–1524 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Chen, J.H., Huang, X.J., Qin, D.D., Cheng, B.T.: Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents. Asymptotic Anal. 120, 199–248 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Chen, J.H., Qin, D.D., Rădulescu, V.D., Zhang, M.C.: Quasilinear Schrödinger equations with exponential growth in \(\mathbb{R}^2\): existence and concentration behavior of solutions (submitted)

  17. Deng, Y., Peng, S., Yan, S.: Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differ. Equ. 260, 1228–1262 (2016)

    MATH  Google Scholar 

  18. Deng, Y., Peng, S., Yan, S.: Positive solition solutions for generalized quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 258, 115–147 (2015)

    MATH  Google Scholar 

  19. Deng, Y., Peng, S., Wang, J.: Nodal soliton solutions for generalized quasilinear Schrödinger equations. J. Math. Phys. 55, 051501 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Deng, Y., Peng, S., Wang, J.: Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J. Math. Phys. 54, 011504 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Fang, X.D., Szulkin, A.: Multiple solutions for a quasilinear Schrödinger equation. J. Differ. Equ. 254, 2015–2032 (2013)

    MATH  Google Scholar 

  22. Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \(\mathbb{R} ^2\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995)

    MATH  Google Scholar 

  23. Furtado, M.F., Silva, E.D., Silva, M.L.: Existence of solutions for a generalized elliptic problem. J. Math. Phys. 58, 031503 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Furtado, M.F., Zanata, H.: Kirchhoff-Schrödinger equation in \(\mathbb{R} ^2\) with critcal exponential growth and indefinte potential. Commun. Contemp. Math. 23, 2050030 (2021)

    MATH  Google Scholar 

  25. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    MathSciNet  Google Scholar 

  26. doÓ, J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger equtions in dimension two. Calc. Var. Partial Differ. Equ. 38, 275–315 (2010)

    Google Scholar 

  27. doÓ, J.M., Moameni, A., Severo, U.: Semi-classical states for quasilinear Schrödinger equtions arising in plasma physics. Commun. Contemp. Math. 11, 547–583 (2009)

    MathSciNet  MATH  Google Scholar 

  28. doÓ, J.M., Miyagaki, O., Soares, S.: Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Anal. 67, 3357–3372 (2007)

    MathSciNet  MATH  Google Scholar 

  29. doÓ, J.M.: \(N\)-Laplacian equation \(\mathbb{R} ^N\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

    MathSciNet  Google Scholar 

  30. doÓ, J.M., Moameni, A.: Solitary waves for quasilinear Schrödinger equations arising in plasma physics. Adv. Nonlinear Stud. 9, 479–497 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Kavian, O.: Introduction à la Thèorie des Points Critiques et Applications aux Problèmes Elliptiques. Springer, Paris (1993)

    MATH  Google Scholar 

  32. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Google Scholar 

  33. Laedke, E., Spatschek, K., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983)

    MathSciNet  MATH  Google Scholar 

  34. Lange, H., Poppenberg, M., Teismann, H.: Nash-Moser methods for the solution of quasilinear Schrödinger equations. Commun. Partial Differ. Equ. 24, 1399–1418 (1999)

    MATH  Google Scholar 

  35. Liu, J., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. I. Proc. Am. Math. Soc. 131, 441–448 (2003)

    MATH  Google Scholar 

  36. Liu, J., Wang, Y., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187, 47–493 (2003)

    MATH  Google Scholar 

  37. Liu, J., Wang, Y., Wang, Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    MATH  Google Scholar 

  38. Li, Q., Teng, K., Wu, X.: Ground state solutions and geometrically distinct solutions for generalized quasilinear Schrödinger equation. Math. Methods Appl. Sci. 40, 2165–2176 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Li, Q., Wu, X.: Multiple solutions for generalized quasilinear Schrödinger equations. Math. Methods Appl. Sci. 40, 1359–1366 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Li, Q., Wu, X.: Existence, multiplicity, and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth. J. Math. Phys. 58, 041501 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Li, G.: Some properties of weak solution of nonlinear scalar field equations. Ann. Acad. Sci. Fenn. A 15, 27–36 (1990)

    MathSciNet  MATH  Google Scholar 

  42. Moser, J.: A sharp form of an ineqaulity by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    MATH  Google Scholar 

  43. Makhankov, V.G., Fedyanin, V.K.: Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    MathSciNet  Google Scholar 

  44. Qin, D.D., Tang, X.H., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J. Differ. Equ. 308, 130–159 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Qin, D.D., Tang, X.H.: On the planar Choquard equation with indefinite potential and critical exponential growth. J. Differ. Equ. 285, 40–98 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interaction. Phys. Rev. E 50, 687–689 (1994)

    Google Scholar 

  47. Severo, U.B., Germano, D.S.: Asymptotically periodic quasilinear Schrödinger equations with critical exponential growth. J. Math. Phys. 62, 111509 (2021)

    MATH  Google Scholar 

  48. Severo, U.B., Germano, D.S.: On concentration of solutions for quasilinear Schrödinger equations with critical growth in the plane. Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2103681

    Article  Google Scholar 

  49. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial Differ. Equ. 39, 1–33 (2010)

    MATH  Google Scholar 

  50. Shen, Y., Wang, Y.: Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. Theory Methods Appl. 80, 194–201 (2013)

    MATH  Google Scholar 

  51. Wu, X.: Multiple solutions for quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 256, 2619–2632 (2014)

    MATH  Google Scholar 

  52. Willem, M.: Minimax theorems, progress in nonlinear differential equations and their applications, 24th edn. Birkhäuser, Boston (1996)

    Google Scholar 

  53. Yang, X., Tang, X., Gu, G.: Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math. Methods Appl. Sci. 43, 3569–3585 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, W., Zhang, J., Rădulescu, V.D.: Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction. J. Differ. Equ. 347, 56–103 (2023)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, J., Zhang, W., Rădulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301, 4037–4078 (2022)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, W., Zhang, J.: Multiplicity and concentration of positive solutions for fractional unbalanced double phase problems. J. Geom. Anal. 32, 235 (2022). https://doi.org/10.1007/s12220-022-00983-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11901276, 11901345, 11961045 and 12261076), and supported partly by the Provincial Natural Science Foundation of Jiangxi, China (Nos. 20202BAB201001 and 20202BAB211004), Yunnan Fundamental Research Projects (202201AT070018 and 202105AC160087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Wen.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wen, X., Huang, X. et al. Existence and Asymptotic Behaviour for the 2D-Generalized Quasilinear Schrödinger Equations Involving Trudinger–Moser Nonlinearity and Potentials. J Geom Anal 33, 299 (2023). https://doi.org/10.1007/s12220-023-01357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01357-z

Keywords

Mathematics Subject Classification

Navigation