Skip to main content
Log in

Existence of Solutions to a Conformally Invariant Integral Equation Involving Poisson-Type Kernels

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study existence of solutions to a conformally invariant integral equation involving Poisson-type kernels. Such integral equation has a stronger non-local feature and is not the dual of any PDE. We obtain the existence of solutions in the antipodal symmetry class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carleman, T.: Zur Theorie der Minimalflächen. Math. Z. 9, 154–160 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, S.: A new family of sharp conformally invariant integral inequalities. Int. Math. Res. Not. IMRN 5, 1205–1220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Jin, T., Ruan, Y.: An existence theorem on the isoperimetric ratio over scalar-flat conformal classes. J. Differ. Equ. 269(5), 4116–4136 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dou, J., Guo, Q., Zhu, M.: Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space. Adv. Math. 312, 1–45 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Escobar, J.F., Schoen, R.: Conformal metrics with prescribed scalar curvature. Invent. Math. 86(2), 243–254 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gluck, M.: Subcritical approach to conformally invariant extension operators on the upper half space. J. Funct. Anal. 278(1), 108082 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gluck, M., Zhu, M.: An extension operator on bounded domains and applications. Calc. Var. Partial Differ. Equ. 58(2), Paper No. 79 (2019)

  9. Hang, F., Wang, X., Yan, X.: Sharp integral inequalities for harmonic functions. Commun. Pure Appl. Math. 61, 0054–0095 (2008)

    Article  MathSciNet  Google Scholar 

  10. Hang, F., Wang, X., Yan, X.: An integral equation in conformal geometry. Ann. Inst. H. Poincaré C Anal. Non Linéaire 26(1), 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, Part II: existence of solutions. Int. Math. Res. Not. IMRN 6, 1555–1589 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Jin, T., Li, Y.Y., Xiong, J.: The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369(1–2), 109–151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, T., Xiong, J.: On the isoperimetric quotient over scalar-flat conformal classes. Commun. Partial Differ. Equ. 43(12), 1737–1760 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moser, J.: On a nonlinear problem in differential geometry. In: Dynamical Systems (Proceedings of a Symposium Held at the University of Bahia, Salvador, 1971), pp. 273–280. New York: Academic Press (1973)

  15. Robert, F.: Positive solutions for a fourth order equation invariant under isometries. Proc. Am. Math. Soc. 131(5), 1423–1431 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang, S., Dou, J.: Classification of positive solutions to an integral system with the poly-harmonic extension operator. Sci. China Math. 61(9), 1603–1616 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, L., Zhu, M.: Liouville theorems on the upper half space. Discrete Contin. Dyn. Syst. 40(9), 5373–5381 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xiong, J.: On a conformally invariant integral equation involving Poisson kernel. Acta Math. Sin. (Engl. Ser.) 34(4), 681–690 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, R.: On higher order extensions for the fractional Laplacian. arXiv:1302.4413

Download references

Acknowledgements

The authors would like to thank the anonymous referees very much for their careful reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Jin was partially supported by Hong Kong RGC grant GRF 16306918 and NSFC Grant 12122120.

Appendix A Hölder Regularity

Appendix A Hölder Regularity

This appendix is devoted to the proof of Theorem 2.3. We start with the improvement of integrability of the subsolutions to some nonlinear integral equations.

Proposition A.1

Suppose that \(n \ge 2\) and \(2 - n< a < 1\). Let \(1 < r, s \le \infty \), \(1 \le t < \infty \), \(\frac{n}{n - 1}< p< q < \infty \) satisfy

$$\begin{aligned} \frac{1}{n}< \frac{t}{q} + \frac{1}{r} < \frac{t}{p} + \frac{1}{r} \le 1 \end{aligned}$$

and

$$\begin{aligned} \frac{n}{t r} + \frac{n - 1}{s} = \frac{1}{t}. \end{aligned}$$

Assume that \(U, V \in L^p (B_R^+)\), \(W \in L^r (B_R^+)\), \(f \in L^s (B_R')\) are all non-negative functions, \(V \in L^q (B_{R/2}^+)\),

$$\begin{aligned} \Vert W \Vert _{L^r (B_R^+)}^{1/t} \Vert f \Vert _{L^s (B_R')} \le \varepsilon (n, a, p, q, r, s, t) ~ \text{ small } \end{aligned}$$

and

$$\begin{aligned} U(x) \le \int _{B_R'} P_a (y', x) f(y') \bigg ( \int _{B_R^+} P_a (y', z) W(z) U(z)^t d z \bigg )^{1/t} d y' + V(x) \end{aligned}$$

for \(x \in B_R^+\). Then \(U \in L^q (B_{R/4}^+)\) and

$$\begin{aligned} \Vert U \Vert _{ L^q (B_{R/4}^+) } \le c(n, a, p, q, r, s, t)\Big ( R^{ \frac{n}{q} - \frac{n}{p} } \Vert U \Vert _{ L^p (B_R^+) } + \Vert V \Vert _{ L^q (B_{R/2}^+) } \Big ). \end{aligned}$$

The proof of Proposition A.1 is the same as that of [9, Proposition 5.2]. We also need the following two \(L^p\)-boundedness for the operator \(\mathcal {P}_a\) and its adjoint operator.

Proposition A.2

(Chen [3]) Suppose that \(n \ge 2\) and \(2 - n< a < 1\). For \(1 < p \le \infty \) we have

$$\begin{aligned} \Vert \mathcal {P}_a f \Vert _{ L^\frac{n p}{n - 1} (\mathbb R_+^n) } \le c(n, a, p) \Vert f \Vert _{ L^p (\mathbb R^{n - 1}) } \end{aligned}$$

for any \(f \in L^p (\mathbb R^{n - 1})\).

For a function F on \(\mathbb R_+^n\), define

$$\begin{aligned} (\mathcal {T}_a F) (y') = \int _{\mathbb R_+^n} P_a (y', x) F(x) d x. \end{aligned}$$

Then we have the following inequality by a duality argument. See also the similar proof in [9, Proposition 2.3].

Proposition A.3

Suppose that \(n \ge 2\) and \(2 - n< a < 1\). For \(1 \le p < n\) we have

$$\begin{aligned} \Vert \mathcal {T}_a F \Vert _{ L^\frac{(n - 1) p}{n - p} (\mathbb R^{n - 1}) } \le C(n, a, p) \Vert F \Vert _{ L^p (\mathbb R_+^n) } \end{aligned}$$

for any \(F \in L^p (\mathbb R_+^n)\).

Next we give the details of the proof of Theorem 2.3.

Proof of Theorem 2.3

Let \(\tilde{u}_0 (y') = K(y') u(y')^{p - 1}\) and \(U_0 (x) = (\mathcal {P}_a u) (x)\). Then

$$\begin{aligned} \tilde{u}_0 (y') = \int _{\mathbb R_+^n} P_a (y', x) U_0 (x)^\frac{n - a + 2}{n + a - 2} d x. \end{aligned}$$

Define

$$\begin{aligned} U_R (x)= & {} \int _{ \mathbb R^{n - 1} \setminus B_R' } P_a (y', x) u(y') d y',\\ \tilde{u}_R (y')= & {} \int _{\mathbb R_+^n \setminus B_R^+} P_a (y', x) U_0 (x)^\frac{n - a + 2}{n + a - 2} d x. \end{aligned}$$

Since \(u \in L_{loc}^p (\mathbb R^{n - 1})\), by Proposition A.2 we get \(\int _{B_R'} P_a (z', \cdot ) u(z') d z' \in L^\frac{n p}{n - 1} (\mathbb R_+^n)\). Notice that

$$\begin{aligned} \frac{n p}{n - 1} \ge \frac{2 n}{n + a - 2}. \end{aligned}$$

Step 1. We claim that \(U_0 \in L_{loc}^\frac{n p}{n - 1} (\overline{\mathbb R_+^n})\) and \(U_R \in L^\frac{n p}{n - 1} (B_R^+) \cap L_{loc}^\infty (B_R^+ \cup B_R')\).

Since \(u \in L_{loc}^p (\mathbb R^{n - 1})\), we have \(u < \infty \) a.e. on \(\mathbb R^{n - 1}\). It implies that \(U_0 < \infty \) a.e. on \(\mathbb R_+^n\). Hence, there exists \(x_0 \in B_R^+\) such that \(U_0 (x_0) < \infty \). It follows that

$$\begin{aligned} \int _{ \mathbb R^{n - 1} \setminus B_R' } \frac{u(z')}{ (|x_0' - z'|^2 + x_{0, n}^2)^\frac{n - a}{2} } d z' < \infty . \end{aligned}$$

Thus,

$$\begin{aligned} \int _{ \mathbb R^{n - 1} \setminus B_R' } \frac{u(z')}{ |z'|^{n - a} } d z' < \infty . \end{aligned}$$

For \(0< \theta < 1\) and \(x \in B_{\theta R}^+\), we have

$$\begin{aligned} U_R (x) = \int _{ \mathbb R^{n - 1} \setminus B_R' } P_a (z', x) u(z') d z' \le \frac{ c_{n, a} R^{1 - a} }{ (1 - \theta )^{n - a} } \int _{ \mathbb R^{n - 1} \setminus B_R' } \frac{ u(z') }{ |z'|^{n - a} } d z'. \end{aligned}$$

It follows that \(U_R \in L_{loc}^\infty (B_R^+ \cup B_R')\). Since \(\int _{B_R'} P_a (z', \cdot ) u(z') d z' \in L^\frac{n p}{n - 1} (\mathbb R_+^n)\), we know that \(U_0 \in L_{loc}^\frac{n p}{n - 1} (B_R^+ \cup B_R')\). Since \(R>0\) is arbitrary, we deduce that \(U_0 \in L_{loc}^\frac{n p}{n - 1} (\overline{\mathbb R_+^n})\) and hence \(U_R \in L^\frac{n p}{n - 1} (B_R^+)\).

Step 2. We show that \(\tilde{u}_R \in L^\frac{p}{p - 1} (B_R') \cap L_{loc}^\infty (B_R')\).

Since \(\tilde{u}_0 \in L_{loc}^\frac{p}{p - 1} (\mathbb R^{n - 1})\), we obtain \(\tilde{u}_0 \in L^\frac{p}{p - 1} (B_R')\) and thus \(\tilde{u}_R \in L^\frac{p}{p - 1} (B_R')\). Hence, we can find \(y_0' \in B_R'\) such that \(\tilde{u}_R (y_0') < \infty \). That is,

$$\begin{aligned} \int _{\mathbb R_+^n \setminus B_R^+} \frac{ z_n^{1 - a} }{ (|z' - y_0'|^2 + z_n^2)^\frac{n - a}{2} } U_0 (z)^\frac{n - a + 2}{n + a - 2} d z < \infty . \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{\mathbb R_+^n \setminus B_R^+} \frac{ z_n^{1 - a} }{ |z|^{n - a} } U_0 (z)^\frac{n - a + 2}{n + a - 2} d z < \infty . \end{aligned}$$

For \(0< \theta < 1\) and \(y' \in B_{\theta R}'\), we have

$$\begin{aligned} \tilde{u}_R (y') = \int _{\mathbb R_+^n \setminus B_R^+} P_a (y', z) U_0 (z)^\frac{n - a + 2}{n + a - 2} d z \le \frac{ c_{n, a} }{ (1 - \theta )^{n - a} } \int _{\mathbb R_+^n \setminus B_R^+} \frac{ z_n^{1 - a} }{ |z|^{n - a} } U_0 (z)^\frac{n - a + 2}{n + a - 2} d z. \end{aligned}$$

This implies that \(\tilde{u}_R \in L_{loc}^\infty (B_R')\).

Step 3. We prove that \(\tilde{u}_0 \in L_{loc}^\infty (\mathbb R^{n - 1})\) and \(U_0 \in L_{loc}^\infty (\overline{\mathbb R_+^n})\).

Case 1: \(\frac{2 (n - 1)}{n + a - 2}< p < \infty \). This is the subcritical case, and we directly use the bootstrap method to prove the regularity.

From Proposition A.2 and Step 1, we know that \(U_0^\frac{n - a + 2}{n + a - 2} \in L_{loc}^{q_0} (\overline{\mathbb R_+^n})\) with

$$\begin{aligned} q_0 := \frac{n p}{n - 1} \cdot \frac{n + a - 2}{n - a + 2}> \frac{2 n}{n + a - 2} \cdot \frac{n + a - 2}{n - a + 2} = \frac{2 n}{n - a + 2} > 1. \end{aligned}$$

If \(q_0 \ge n\), by Proposition A.3 we know that \(\int _{B_R^+} P_a (\cdot , z) U_0 (z)^\frac{n - a + 2}{n + a - 2} d z \in L^r (\mathbb R^{n - 1})\) for any \(1 \le r < \infty \). This together with Step 2 implies that \(\tilde{u}_0 \in L_{loc}^r (B_R')\) for any \(1 \le r < \infty \). Since R is arbitrary, we obtain \(\tilde{u}_0 \in L_{loc}^r (\mathbb R^{n - 1})\) for any \(1 \le r < \infty \). Moreover, by Proposition A.2 we have \(\int _{B_R'} P_a (z', \cdot ) u(z') d z' \in L^s (\mathbb R_+^n)\) for any \(\frac{n}{n - 1}< s < \infty \). Combined with Step 1, we also have \(U_0 \in L_{loc}^s (\overline{\mathbb R_+^n})\) for any \(1 \le s < \infty \). If \(q_0 < n\), then Proposition A.3 yields \(\int _{B_R^+} P_a (\cdot , z) U_0 (z)^\frac{n - a + 2}{n + a - 2} d z \in L^\frac{(n - 1) q_0}{n - q_0} (\mathbb R^{n - 1})\). Combined with Step 2, we have \(\tilde{u}_0 \in L_{loc}^\frac{(n - 1) q_0}{n - q_0} (B_R')\) for any \(R>0\). Consequently, we deduce that \(u \in L_{loc}^{p_1} (\mathbb R^{n - 1})\) with

$$\begin{aligned} p_1 := (p - 1) \cdot \frac{(n - 1) q_0}{n - q_0} = p \cdot \frac{ (p - 1) \frac{n + a - 2}{n - a + 2} }{ 1 - \frac{p (n + a - 2)}{(n - 1) (n - a + 2)} } > p, \end{aligned}$$

where the last inequality holds since \(p > \frac{2 (n - 1)}{n + a - 2}\). From now on, we denote the constant

$$\begin{aligned} \gamma :=\frac{ (p - 1) \frac{n + a - 2}{n - a + 2} }{ 1 - \frac{p (n + a - 2)}{(n - 1) (n - a + 2)} }>1. \end{aligned}$$

We can see that the regularity of u is boosted to \(L^{p_1}_{loc}(\mathbb R^{n - 1})\) with \(p_1 =p \cdot \gamma \).

Using Proposition A.2 and Step 1 again, we obtain \(U_0^\frac{n - a + 2}{n + a - 2} \in L_{loc}^{q_1} (\overline{\mathbb R_+^n})\) with

$$\begin{aligned} q_1 := \frac{n p_1}{n - 1} \cdot \frac{n + a - 2}{n - a + 2} = q_0 \cdot \gamma > q_0. \end{aligned}$$

If \(q_1 \ge n\), then we easily obtain \(U_0 \in L_{loc}^s (\overline{\mathbb R_+^n})\) for any \(1 \le s < \infty \). If \(q_1 < n\), by a similar argument as above we can obtain that \(u \in L_{loc}^{p_2} (\mathbb R^{n - 1})\) with

$$\begin{aligned} p_2 := (p-1) \cdot \frac{(n-1)q_1}{n-q_1}= p_1 \cdot \frac{ (p - 1) \frac{n + a - 2}{n - a + 2} }{ 1 - \frac{p_1 (n + a - 2)}{(n - 1) (n - a + 2)} } > p_1 \cdot \gamma \end{aligned}$$

due to \(p_1 > p\). Hence, the regularity of u is boosted to \(L^{p_2}_{loc}(\mathbb R^{n - 1})\) with \(p_2 > p_1 \cdot \gamma \). By Proposition A.2 and Step 1 again, we obtain \(U_0^\frac{n - a + 2}{n + a - 2} \in L_{loc}^{q_2} (\overline{\mathbb R_+^n})\) with

$$\begin{aligned} q_2 := \frac{n p_2}{n - 1} \cdot \frac{n + a - 2}{n - a + 2} > q_1\cdot \gamma . \end{aligned}$$

Repeating this process with finite many steps, we can boost \(U_0\) to \(L_{loc}^q (\overline{\mathbb R_+^n})\) for any \(1 \le q < \infty \). By Hölder inequality we get

$$\begin{aligned} \tilde{u}_0 (y') = \int _{ B_R^+} P_a (y', z) U_0 (z)^\frac{n - a + 2}{n + a - 2} d z + \tilde{u}_R (y') \le c(n, a, q) \Vert U_0 \Vert _{ L^q (B_R^+) }^\frac{n - a + 2}{n + a - 2} + \tilde{u}_R (y') \end{aligned}$$

for some \(q > \frac{n(n - a + 2)}{n + a - 2}\). This together with Step 2 implies that \(\tilde{u}_0 \in L_{loc}^\infty (B_R')\). Since R is arbitrary, we have \(\tilde{u}_0 \in L_{loc}^\infty (\mathbb R^{n - 1})\) and hence \(u \in L_{loc}^\infty (\mathbb R^{n - 1})\). Combined with Step 1, we see \(U_0 \in L_{loc}^\infty (\overline{\mathbb R_+^n})\).

Case 2: \(p = \frac{2 (n - 1)}{n + a - 2}\). For this critical case, the bootstrap method above does not work. We will use Proposition A.1 to establish the regularity.

In this case, we have \(U_0 \in L_{loc}^\frac{2 n}{n + a - 2} (\overline{\mathbb R_+^n})\) and \(U_R \in L^\frac{2 n}{n + a - 2} (B_R^+) \cap L_{loc}^\infty (B_R^+ \cup B_R')\). Since \(a < 1\), we get \(0< \frac{n + a - 2}{n - a} < 1\). Then,

$$\begin{aligned} \tilde{u}_0 (y')^\frac{n + a - 2}{n - a} \le \bigg ( \int _{B_R^+} P_a (y', z) U_0 (z)^\frac{n - a + 2}{n + a - 2} d z \bigg )^\frac{n + a - 2}{n - a} + \tilde{u}_R (y')^\frac{n + a - 2}{n - a}. \end{aligned}$$

Hence,

$$\begin{aligned} U_0 (x) =&\int _{B_R'} P_a (y', x) u (y') d y' + U_R (x) \\ =&\int _{B_R'} P_a (y', x) K(y')^{- \frac{n + a - 2}{n - a} } \tilde{u}_0 (y')^\frac{n + a - 2}{n - a} d y' + U_R (x) \\ \le&\int _{B_R'} P_a (y', x) K(y')^{- \frac{n + a - 2}{n - a} } \bigg ( \int _{B_R^+} P_a (y', z) U_0 (z)^\frac{2}{n + a - 2} U_0 (z)^\frac{n - a}{n + a - 2} d z \bigg )^\frac{n + a - 2}{n - a} d y'\\&+ V_R (x), \end{aligned}$$

where

$$\begin{aligned} V_R (x) = \int _{B_R'} P_a (y', x) K(y')^{ - \frac{n + a - 2}{n - a} } \tilde{u}_R (y')^\frac{n + a - 2}{n - a} d y' + U_R (x). \end{aligned}$$

Since \(\tilde{u}_R \in L^\frac{2 (n - 1)}{n - a} (B_R')\), we have \(V_R \in L^\frac{2 n}{n + a - 2} (B_R^+)\). On the other hand, for \(0< \theta < 1\), \(x \in B_{\theta R}^+\), we have

$$\begin{aligned} \begin{aligned}&\int _{B_R'} P_a (y', x) K(y')^{- \frac{n + a - 2}{n - a} } \tilde{u}_R (y')^\frac{n + a - 2}{n - a} d y' \\&\quad \le (\min \nolimits _{B_R'} K)^{- \frac{n + a - 2}{n - a} } \bigg [ \Vert \tilde{u}_R \Vert _{ L^\infty (B_{ \frac{1 + \theta }{2} R }) }^\frac{n + a - 2}{n - a} + \frac{c(n, a)}{ (1 - \theta )^{n - a} R^{n - 1} } \int _{ B_R' \setminus B_{ \frac{1 + \theta }{2} R } } \tilde{u}_R (y')^\frac{n + a - 2}{n - a} d y' \bigg ] \\&\quad \le (\min \nolimits _{B_R'} K)^{- \frac{n + a - 2}{n - a} } \bigg [ \Vert \tilde{u}_R \Vert _{ L^\infty (B_{ \frac{1 + \theta }{2} R }) }^\frac{n + a - 2}{n - a} + \frac{c(n, a)}{ (1 - \theta )^{n - a} R^\frac{n + a - 2}{2} } \Vert \tilde{u}_R \Vert _{ L^\frac{2 (n - 1)}{n - a} (B_R') }^\frac{n + a - 2}{n - a} \bigg ]. \end{aligned} \end{aligned}$$

Hence, \(V_R \in L_{loc}^\infty (B_R^+ \cup B_R')\). It follows from Proposition A.1 that \(U_0 \in L^q (B_{R/4}^+)\) for any \(\frac{2 n}{n + a - 2}< q < \infty \) when R is sufficiently small. Therefore,

$$\begin{aligned} \tilde{u}_0 (y') = \int _{ B_{R/4}^+ } P_a (y', z) U_0 (z)^\frac{n - a + 2}{n + a - 2} d z + \tilde{u}_{R/4} (y') \le c(n, a, q) \Vert U_0 \Vert _{ L^q (B_{R/4}^+) }^\frac{n - a + 2}{n + a - 2} + \tilde{u}_{R/4} (y') \end{aligned}$$

for some \(q > \frac{n(n - a + 2)}{n + a - 2}\). In particular, we see \(\tilde{u}_0 \in L^\infty (B_{R/8}')\). Since every point can be viewed as a center, we get \(\tilde{u}_0 \in L_{loc}^\infty (\mathbb R^{n - 1})\) and hence \(U_0 \in L_{loc}^\infty (\overline{\mathbb R_+^n})\).

Step 4. We prove that \(u \in C_{loc}^\beta (\mathbb R^{n - 1})\) for any \(\beta \in (0, 1)\).

From Step 1 and 2, we know that for any \(R > 0\),

$$\begin{aligned} \int _{ \mathbb R^{n - 1} \setminus B_R' } \frac{u(y')}{ |y'|^{n - a} } d y'< \infty ~~~~~~ and ~~~~~~ \int _{\mathbb R_+^n \setminus B_R^+} \frac{ x_n^{1 - a} }{ |x|^{n - a} } U_0 (x)^\frac{n - a + 2}{n + a - 2} d x < \infty . \end{aligned}$$

Therefore, \(\tilde{u}_R \in C^\infty (B_R')\) and \(U_R \in C^{1-a}(B_R^+ \cup B_R')\). It follows from Step 3 that \(\tilde{u}_0 \in C_{loc}^\beta (\mathbb R^{n - 1})\) for any \(0< \beta < 1\). By the continuity, \(\tilde{u}_0 > 0\) in \(\mathbb R^{n - 1}\). Consequently, \(u \in C_{loc}^\beta (\mathbb R^{n - 1})\) for any \(0< \beta < 1\) since K is a positive \(C^1\) function in \(\mathbb R^n\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Jin, T. & Yang, H. Existence of Solutions to a Conformally Invariant Integral Equation Involving Poisson-Type Kernels. J Geom Anal 33, 286 (2023). https://doi.org/10.1007/s12220-023-01350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01350-6

Keywords

Mathematics Subject Classification

Navigation