Skip to main content
Log in

Heat Kernel Estimate in a Conical Singular Space

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let (Xg) be a product cone with the metric \(g=dr^2+r^2h\), where \(X=C(Y)=(0,\infty )_r\times Y\) and the cross section Y is a \((n-1)\)-dimensional closed Riemannian manifold (Yh). We study the upper boundedness of heat kernel associated with the operator \({\mathcal {L}}_V=-\Delta _g+V_0 r^{-2}\), where \(-\Delta _g\) is the positive Friedrichs extension Laplacian on X and \(V=V_0(y) r^{-2}\) and \(V_0\in {\mathcal {C}}^\infty (Y)\) is a real function such that the operator \(-\Delta _h+V_0+(n-2)^2/4\) is a strictly positive operator on \(L^2(Y)\). The new ingredient of the proof is the Hadamard parametrix and finite propagation speed of wave operator on Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alexopoulos, G.: Spectral multipliers for Markov chains. J. Math. Soc. Japan 56, 833–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203, 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carron, G.: Le saut en zéro de la fonction de décalage spectral. J. Funct. Anal. 212, 222–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Couhon, T., Li, H.: Estimations inférieures du noyau de la chaleur sur les variétés coniques et transformée de Riesz. Arch. Math. 83, 229–242 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Coulhon, T., Sikora, T.: Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem. Proc. Lond. Math. Soc. (3) 96, 507–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheeger, J.: On the spectral geometry of spaces with cone-like singularities. Proc. Natl. Acad. Sci. U.S.A. 76, 2103–2106 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18, 575–657 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Taylor, M.: On the diffraction of waves by conical singularities, I. Commun. Pure Appl. Math. 35, 275–331 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Taylor, M.: On the diffraction of waves by conical singularities, II. Commun. Pure Appl. Math. 35, 487–529 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. https://dlmf.nist.gov/10.32

  11. Gao, X., Zhang, J., Zheng, J.: Restriction estimates in a conical singular space: wave equation. J. Fourier Anal Appl. 28, 44 (2022). https://doi.org/10.1007/s00041-022-09941-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom. 45, 33–52 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators III: Pseudo-differential Operators. Springer, Berlin (1985)

    MATH  Google Scholar 

  14. Hassell, A., Lin, P.: The Riesz transform for homogeneous Schrödinger operators on metric cones. Rev. Mat. Iberoamericana 30, 477–522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z. 288, 1273–1298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, H.: \(L^p\)-estimates for the wave equation on manifolds with conical singularities. Math. Z. 272, 551–575 (2012)

    Article  MathSciNet  Google Scholar 

  17. Li, H.: La transformation de Riesz sur les variétés coniques. J. Funct. Anal. 168, 145–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H.: Estimations du noyau de la chaleur sur les variétés coniques et ses applications. Bull. Sci. Math. 124, 365–384 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liskevich, V., Sobol, Z.: Estimates of integral kernels for semigroups associated with second order elliptic operators with singular coefficients. Potential Anal. 18, 359–390 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milman, P.D., Semenov, Yu.A.: Global heat kernel bounds via desingularizing weights. J. Funct. Anal. 212, 373–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mooers, E.: Heat kernel asymptotics on manifolds with conic singularities. J. Anal. Math. 78, 1–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nagase, M.: The fundamental solutions of the heat equations on Riemannian spaces with cone-like singular points. Kodai Math, J. 7, 382–455 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sogge, C.D.: Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 105. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  24. Sogge, C.D.: Hangzhou Lectures on Eigenfunctions of the Laplacian. Princeton University Press, Princeton (2014)

    Book  MATH  Google Scholar 

  25. Taylor, M.: Partial Differential Equations, vol. II. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  26. Wang, X.: Asymptotic expansion in time of the Schrödinger group on conical manifolds. Ann. Inst. Fourier 56, 1903–1945 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

  28. Yau, S.T.: Nonlinear Analysis in Geometry, Monographie No. 33 de l’Enseignement Mathématique, Série des Conférences de l’Union Mathématique Internationale, No. 8

  29. Zhang, J.: Linear restriction estimates for Schrödinger equation on metric cones. Commun. PDE 40, 995–1028 (2015)

    Article  MATH  Google Scholar 

  30. Zhang, J., Zheng, J.: Global-in-time Strichartz estimates and cubic Schrödinger equation in a conical singular space. arXiv:1702.05813

  31. Zhang, J., Zheng, J.: Strichartz estimates and wave equation in a conic singular space. Math. Ann. 376, 525–581 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Hongquan Li for his discussions and comments that improved the exposition. JZ acknowledges support from National key R &D program of China: No. 2022YFA1005700 and National Natural Science Foundation of China (12171031,11831004), XH acknowledges support from an AMS-Simons travel grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqi Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, J. Heat Kernel Estimate in a Conical Singular Space. J Geom Anal 33, 284 (2023). https://doi.org/10.1007/s12220-023-01348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01348-0

Keywords

Mathematics Subject Classification

Navigation