Skip to main content
Log in

Sobolev spaces adapted to the Schrödinger operator with inverse-square potential

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the \(L^p\)-theory for the Schrödinger operator \(\mathcal L_a\) with inverse-square potential \(a|x|^{-2}\). Our main result describes when \(L^p\)-based Sobolev spaces defined in terms of the operator \((\mathcal L_a)^{s/2}\) agree with those defined via \((-\Delta )^{s/2}\). We consider all regularities \(0<s<2\). In order to make the paper self-contained, we also review (with proofs) multiplier theorems, Littlewood–Paley theory, and Hardy-type inequalities associated to the operator \(\mathcal L_a\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.I., Glazman, I.M.: Theory of linear operators in Hilbert space. Translated from the Russian and with a preface by Merlynd Nestell. Reprint of the 1961 and 1963 translations. Two volumes bound as one. Dover Publications, Inc., New York (1993)

  2. Alexopoulos, G.: Spectral multipliers on Lie groups of polynomial growth. Proc. Am. Math. Soc. 120(3), 973–979 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexopoulos, G.: Spectral multipliers for Markov chains. J. Math. Soc. Jpn. 56, 833–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Assaad, J.: Riesz transforms associated to Schrödinger operators with negative potentials. Publ. Mat. 55(1), 123–150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Assaad, J., Ouhabaz, E.M.: Riesz transforms of Schrödinger operators on manifolds. J. Geom. Anal. 22(4), 1108–1136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blunck, S.: A Hörmander-type spectral multiplier theorem for operators without heat kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(3), 449–459 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal. 203, 519–549 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadeh, A.S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53, 1665–1680 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, P., Ouhabaz, E. M., Sikora, A., Yan, L.: Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner–Riesz means. Preprint arXiv:1202.4052

  11. Coulhon, T., Sikora, A.: Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem. Proc. Lond. Math. Soc. 96, 507–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hassell, A., Lin, P.: The Riesz transform for homogeneous Schrödinger operators on metric cones. Rev. Mat. Iberoam. 30(2), 477–522 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hassell, A., Sikora, A.: Riesz transforms in one dimension. Indiana Univ. Math. J. 58(2), 823–852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hebisch, W.: A multiplier theorem for Schrödinger operators. Colloq. Math. 60/61(2), 659–664 (1990)

    Article  MATH  Google Scholar 

  15. Kalf, H., Schmincke, U.W., Walter, J., Wüst, R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. In: Spectral theory and differential equations, vol. 448, pp. 182–226. Lect. Notes in Math. Springer, Berlin (1975)

  16. Killip, R., Miao, C., Visan, M., Zhang, J., Zheng, J.: The energy-critical NLS with inverse-square potential. Preprint arXiv:1509.05822

  17. Killip, R., Murphy, J., Visan, M., Zheng, J.: The focusing cubic NLS with inverse-square potential in three space dimensions. Preprint arXiv:1603.08912

  18. Killip, R., Visan, M., Zhang, X.: Riesz transforms outside a convex obstacle. Preprint arXiv:1205.5782

  19. Liskevich, V., Sobol, Z.: Estimates of integral kernels for semigroups associated with second order elliptic operators with singular coefficients. Potential Anal. 18, 359–390 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milman, P.D., Semenov, YuA: Global heat kernel bounds via desingularizing weights. J. Funct. Anal. 212, 373–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York (1975)

    MATH  Google Scholar 

  22. Sikora, A.: Riesz transform, Gaussian bounds and the method of the wave equation. Math. Z. 247(3), 643–662 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sikora, A., Wright, J.: Imaginary powers of Laplace operators. Proc. Am. Math. Soc. 129(6), 1745–1754 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  25. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-order Differential Equations. Part I. Second Edition. Clarendon Press, Oxford (1962)

    MATH  Google Scholar 

  26. Taylor, M.E.: Tools for PDE. Mathematical Surveys and Monographs, vol. 81. American Mathematical Society, Providence (2000)

    Google Scholar 

  27. Triebel, H.: The Structure of Functions. Monographs in Mathematics, vol. 97. Birkhäuser Verlag, Basel (2001)

    Google Scholar 

  28. Vazquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, J., Zheng, J.: Scattering theory for nonlinear Schrödinger with inverse-square potential. J. Funct. Anal. 267, 2907–2932 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to E. M. Ouhabaz and an anonymous referee for references connected with Theorem 1.1. R. Killip was supported by NSF Grant DMS-1265868. He is grateful for the hospitality of the Institute of Applied Physics and Computational Mathematics, Beijing, where this project was initiated. C. Miao was supported by NSFC Grants 11171033 and 11231006. M. Visan was supported by NSF Grant DMS-1161396. J. Zhang was supported by PFMEC (20121101120044), Beijing Natural Science Foundation (1144014), and NSFC Grant 11401024. J. Zheng was partly supported by the ERC Grant SCAPDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Killip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Killip, R., Miao, C., Visan, M. et al. Sobolev spaces adapted to the Schrödinger operator with inverse-square potential. Math. Z. 288, 1273–1298 (2018). https://doi.org/10.1007/s00209-017-1934-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1934-8

Keywords

Mathematics Subject Classification

Navigation