Skip to main content
Log in

Mean Curvature Flow and Low Energy Solutions of the Parabolic Allen-Cahn Equation on the Three-Sphere

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we study eternal solutions to the Allen-Cahn equation in the 3-sphere, in view of the connection between the gradient flow of the associated energy functional, and the mean curvature flow. We construct eternal integral Brakke flows that connect Clifford tori to equatorial spheres, and study a family of such flows, in particular their symmetry properties. Our approach is based on the realization of Brakke’s motion by mean curvature as a singular limit of Allen-Cahn gradient flows, as studied by Ilmanen (J Differ Geom 38(2):417–461, 1993) and Tonegawa (Hiroshima Math J 33(3): 323–341, 2003), and it uses the classification of ancient gradient flows in spheres, by Choi and Mantoulidis (Amer J Math, 2019), as well as the rigidity of stationary solutions with low Morse index proved by Hiesmayr (arXiv:2007.08701 [math.DG], 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ilmanen, T.: Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tonegawa, Y.: Integrality of varifolds in the singular limit of reaction-diffusion equations. Hiroshima Math. J. 33(3), 323–341 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Choi, K., Mantoulidis, C.: Ancient gradient flows of elliptic functionals and morse index. arXiv:1902.07697 [math.DG]. To appear in Amer. J. Math. (2019)

  4. Hiesmayr, F.: Rigidity of low index solutions on \({S}^3\) via a Frankel theorem for the Allen-Cahn equation. arXiv:2007.08701 [math.DG] (2020)

  5. Cahn, J., Allen, S.: A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics. Le Journal de Physique Colloques 38(12), C7-51 (1977)

    Google Scholar 

  6. Bronsard, L., Kohn, R.V.: Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differ. Eqs. 90(2), 211–237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X.: Generation and propagation of interfaces for reaction-diffusion equations. J. Differ. Eqs. 96(1), 116–141 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45(9), 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Mottoni, P., Schatzman, M.: Évolution géométrique d’interfaces. C. R. Acad. Sci. Paris Sér. I Math. 309(7), 453–458 (1989)

  11. Rubinstein, J., Sternberg, P., Keller, J.B.: Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math. 49(1), 116–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Soner, H.M.: Ginzburg-Landau equation and motion by mean curvature. I. Convergence. J. Geom. Anal. 7(3), 437–475 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brakke, K.A.: The motion of a surface by its mean curvature. Mathematical Notes, vol. 20. Princeton University Press, Princeton, N.J. (1978)

    MATH  Google Scholar 

  14. Mizuno, M., Tonegawa, Y.: Convergence of the Allen-Cahn equation with Neumann boundary conditions. SIAM J. Math. Anal. 47(3), 1906–1932 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pisante, A., Punzo, F.: Allen-Cahn approximation of mean curvature flow in Riemannian manifolds, II: Brakke’s flows. Commun. Contemp. Math. 17(5), 1450041,35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sato, N.: A simple proof of convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. Indiana Univ. Math. J. 57(4), 1743–1751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Modica, L., Mortola, S.: Un esempio di \(\Gamma ^{-}\)-convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A 111(1–2), 69–84 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hutchinson, J.E., Tonegawa, Y.: Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differ. Equ. 10(1), 49–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tonegawa, Y., Wickramasekera, N.: Stable phase interfaces in the van der Waals-Cahn-Hilliard theory. J. Reine Angew. Math. 668, 191–210 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Guaraco, M.A.M.: Min-max for phase transitions and the existence of embedded minimal hypersurfaces. J. Differ. Geom. 108(1), 91–133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wickramasekera, N.: A general regularity theory for stable codimension 1 integral varifolds. Ann. Math. (2) 179(3), 843–1007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pitts, J.T.: Existence and regularity of minimal surfaces on Riemannian manifolds, vol. 27 of Mathematical Notes. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1981)

  24. Chodosh, O., Mantoulidis, C.: Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates. Ann. Math. (2) 191(1), 213–328 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marques, F.C., Neves, A.: Morse index and multiplicity of min-max minimal hypersurfaces. Camb. J. Math. 4(4), 463–511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gaspar, P., Guaraco, M.A.M.: The Allen-Cahn equation on closed manifolds. Calc. Var. Partial Differ. Eqs. 57(4), (2018). Paper No. 101, 42

  27. Marques, F.C., Neves, A.: Topology of the space of cycles and existence of minimal varieties. In Surveys in differential geometry: Advances in geometry and mathematical physics, vol. 21 of Surv. Differ. Geom. Int. Press, Somerville, MA 2016, 165–177 (2016)

  28. Zhou, X.: On the multiplicity one conjecture in min-max theory. Ann. Math. (2) 192(3), 767–820 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huisken, G., Sinestrari, C.: Convex ancient solutions of the mean curvature flow. J. Differ. Geom. 101(2), 267–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Risa, S., Sinestrari, C.: Ancient solutions of geometric flows with curvature pinching. J. Geom. Anal. 29(2), 1206–1232 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lei, L., Xu, H., Zhao, E.: Ancient solution of mean curvature flow in space forms. Trans. Amer. Math. Soc. 374(4), 2359–2381 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bryan, P., Ivaki, M.N., Scheuer, J.: On the classification of ancient solutions to curvature flows on the sphere. arXiv:1604.01694 [math.DG] (2016)

  33. Haslhofer, R., Hershkovits, O.: Singularities of mean convex level set flow in general ambient manifolds. Adv. Math. 329, 1137–1155 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc. 108, 520 (1994). (x+90)

    MathSciNet  MATH  Google Scholar 

  35. Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. (2) 179(2), 683–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Caju, R., Gaspar, P., Guaraco, M.A., Matthiesen, H.: Ground states of semilinear elliptic equations. arXiv:2006.10607 [math.DG] (2020)

  37. White, B.: Currents and flat chains associated to varifolds, with an application to mean curvature flow. Duke Math. J. 148(1), 41–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tonegawa, Y.: Brakke’s mean curvature flow. Springer Briefs in Mathematics. Springer, Singapore (2019)

    Book  MATH  Google Scholar 

  39. Modica, L.: A gradient bound and a Liouville theorem for nonlinear Poisson equations. Comm. Pure Appl. Math. 38(5), 679–684 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Takasao, K., Tonegawa, Y.: Existence and regularity of mean curvature flow with transport term in higher dimensions. Math. Ann. 364(3–4), 857–935 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nguyen, H.T., Wang, S.: Brakke regularity for the Allen-Cahn flow. arXiv:2010.12378 [math.AP] (2020)

  42. Nguyen, H.T., Wang, S.: Second order estimates for transition layers and a curvature estimate for the parabolic Allen-Cahn. arXiv:2003.11886 [math.DG] (2020)

  43. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 2(88), 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  44. Urbano, F.: Minimal surfaces with low index in the three-dimensional sphere. Proc. Amer. Math. Soc. 108(4), 989–992 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Brendle, S.: Embedded minimal tori in \(S^3\) and the Lawson conjecture. Acta Math. 211(2), 177–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Caju, R., Gaspar, P.: Solutions of the Allen-Cahn equation on closed manifolds in the presence of symmetry. arXiv:1906.05938 [math.DG] (2019)

  47. Gaspar, P.: The second inner variation of energy and the Morse index of limit interfaces. J. Geom. Anal. 30(1), 69–85 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Feehan, P.M.N., Maridakis, M.: Łojasiewicz-Simon gradient inequalities for analytic and Morse-Bott functions on Banach spaces. J. Reine Angew. Math. 765, 35–67 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Cazenave, T., Haraux, A.: An introduction to semilinear evolution equations, vol. 13 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1990 French original by Yvan Martel and revised by the authors

  50. Hiesmayr, F.: Spectrum and index of two-sided Allen-Cahn minimal hypersurfaces. Comm. Partial Differ. Eqs. 43(11), 1541–1565 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kasai, K., Tonegawa, Y.: A general regularity theory for weak mean curvature flow. Calc. Var. Partial Differ. Eqs. 50(1–2), 1–68 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank André Neves for his support, and for many invaluable discussions and suggestions. PG was partially supported by Prof. Neves’ Simons Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Gaspar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gaspar, P. Mean Curvature Flow and Low Energy Solutions of the Parabolic Allen-Cahn Equation on the Three-Sphere. J Geom Anal 33, 283 (2023). https://doi.org/10.1007/s12220-023-01347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01347-1

Keywords

Mathematics Subject Classification

Navigation