Skip to main content
Log in

On a Fractional Nirenberg Problem Involving the Square Root of the Laplacian on \({\mathbb {S}}^{3}\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we are devoted to establishing the compactness and existence results of the solutions to the fractional Nirenberg problem for \(n=3,\) \(\sigma =1/2,\) when the prescribing \(\sigma \)-curvature function satisfies the \((n-2\sigma )\)-flatness condition near its critical points. The compactness results are new and optimal. In addition, we obtain a degree-counting formula of all solutions. From our results, we can know where blow up occur. Moreover, for any finite distinct points, the sequence of solutions that blow up precisely at these points can be constructed. We extend the results of Li (Commun Pure Appl Math 49:541–597, 1996) from the local problem to nonlocal cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelhedi, W., Chtioui, H.: On a Nirenberg-type problem involving the square root of the Laplacian. J. Funct. Anal. 265, 2937–2955 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdelhedi, W., Chtioui, H., Hajaiej, H.: A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I. Anal. PDE 9, 1285–1315 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd ed., vol. 116. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2009)

  4. Bahri, A.: Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182. Longman Scientific & Technical, Harlow; copublished in the United States, pp. vi+I15+307. Wiley, New York (1989)

  5. Bahri, A.: An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension. Duke Math. J. 81, 323–466 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bahri, A., Coron, J.: The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal. 95, 106–172 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bjorland, C., Caffarelli, L., Figalli, A.: Non-local gradient dependent operators. Adv. Math. 230, 1859–1894 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, S.-Y., González, M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, S.-Y., Gursky, M., Yang, P.: The scalar curvature equation on 2-and 3-spheres. Calc. Var. Partial Differ. Equ. 1, 205–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, S.-Y., Yang, P.: Prescribing Gaussian curvature on \({\mathbb{S} }^2\). Acta Math. 159, 215–259 (1987)

    Article  MathSciNet  Google Scholar 

  12. Chen, Y.-H., Liu, C., Zheng, Y.: Existence results for the fractional Nirenberg problem. J. Funct. Anal. 270, 4043–4086 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chtioui, H., Abdelhedi, W.: On a fractional Nirenberg type problem on the \(n\) dimensional sphere. Complex Var. Elliptic Equ. 62, 1015–1036 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series, Boca Raton (2004)

    MATH  Google Scholar 

  15. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graham, C., Jenne, R., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian I. Existence. J. Lond. Math. Soc. 46, 557–565 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, C., Zworski, M.: Scattering matrix in conformal geometry. Invent. Math. 152, 89–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hajaiej, H., Molinet, L., Ozawa, T., Wang, B.: Necessary and Sufficient Conditions for the Fractional Gagliardo-Nirenberg Inequalities and Applications to Navier-Stokes and Generalized Boson Equations. Harmonic Analysis and Nonlinear Partial Differential Equations, pp. 159–175, RIMS Kôkyûroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto (2011)

  19. Han, Z.-C.: Prescribing Gaussian curvature on \({\mathbb{S} }^2\). Duke Math. J. 61, 679–703 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. (JEMS) 16, 1111–1171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part II: existence of solutions. Int. Math. Res. Not. IMRN 1555–1589 (2015)

  22. Kazdan, J., Warner, F.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. Math. 101, 317–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koutroufiotis, D.: Gaussian curvature and conformal mapping. J. Differ. Geom. 7, 479–488 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Tang, Z., Zhou, N.: Compactness and existence results of the prescribing fractional \(Q\)-curvatures problem on \(\mathbb{S} ^n\). Calc. Var. Partial Differ. Equ. 62, 58 (2022)

    Article  Google Scholar 

  25. Li, Y.Y.: On \( -\Delta u = K(x)u^5\) in \({\mathbb{R} }^{3}\). Commun. Pure Appl. Math. 46, 303–340 (1993)

    Article  Google Scholar 

  26. Li, Y.Y.: Prescribing scalar curvature on \({\mathbb{S} }^{n}\) and related problems, Part I. J. Differ. Equ. 120, 319–410 (1995)

    Article  MATH  Google Scholar 

  27. Li, Y.Y.: Prescribing scalar curvature on \({\mathbb{S} }^{n}\) and related problems, Part II: existence and compactness. Commun. Pure Appl. Math. 49, 541–597 (1996)

    Article  Google Scholar 

  28. Liu, Z.: Concentration of solutions for the fractional nirenberg problem. Commun. Pure Appl. Anal. 15, 563–576 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Majda, A., Tabak, E.: A two-dimensional model for quasigeostrophic flow: comparision with the two-dimensional Euler flow. Physica D 98, 515–522 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moser, J.: On a nonlinear problem in differential geometry. In: Peixoto, M. (ed.) Dynamical Systems (Salvador, 1971), pp. 273–280. Academic Press, New York (1973)

    Chapter  Google Scholar 

  31. Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Symmetry Integrability Geom. Methods Appl. 4, 36 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Peterson, L.: Conformally covariant pseudo-differential operators. Differ. Geom. Appl. 13, 197–211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schoen, R., Zhang, D.: Prescribed scalar curvature on the \(n\)-sphere. Calc. Var. Partial Differ. Equ. 4, 1–25 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vázquez, J.: Nonlinear diffusion with fractional Laplacian operators. In: Nonlinear Partial Differential Equations: the Abel Symp., pp. 271–298 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by National Science Foundation of China (12071036, 12126306).

A Appendix

A Appendix

In this appendix, we provide some elementary calculations which have been used in the proof of Theorem 1.3.

Lemma A.1

Let \(\alpha \ge 2,\) there exists a positive constant C depending only on \(\alpha \) such that, for any \(a \ge 0,\) \(b \in {\mathbb {R}},\)

$$\begin{aligned} \Big | | a+b|^{\alpha -1}(a+b)-a^{\alpha }-\alpha a^{\alpha -1} b-\frac{\alpha (\alpha -1)}{2} a^{\alpha -2} b^{2} \Big | \le C\left( |b|^{\alpha }+a^{\gamma }|b|^{\alpha -\gamma }\right) , \end{aligned}$$

where \(\gamma =\max \{0,\alpha -3\}.\)

Lemma A.2

Let \(1<\beta <2,\) there exists a universal positive constant C such that, for any \(a>0,\) \(b\in {\mathbb {R}},\)

$$\begin{aligned} \left| |a+b|^{\beta -1}(a+b)-a^{\beta }-\beta a^{\beta -1}b\right| \le C|b|^{\beta }. \end{aligned}$$

Lemma A.3

Let \(\beta >1\) and \(k\in {\mathbb {N}}_{+},\) there exists a constant C, such that for any \((a_{1},\ldots , a_{k}) \in {\mathbb {R}}^{k},\)

$$\begin{aligned} \Big |\Big (\sum _{i=1}^{k} a_i\Big )^{\beta }-\sum _{i=1}^{k} a_{i}^{\beta } \Big | \le C\sum _{i \ne j}|a_{i}|^{\beta -1} |a_{j}|. \end{aligned}$$

Lemma A.4

Let \(\varepsilon _{0}, \tau >0\) be suitably small and \(A>0\) be suitably large. Let \(A^{-1} \tau ^{-1 / 2}<t_{1}, t_{2}<A \tau ^{-1 / 2},\) \(P_{1},P_{2}\in {\mathbb {S}}^3,\) \(|P_{1}-P_{2}|\ge \varepsilon _{0},\) \(\delta _{P_{i},t_{i}}\) be as in (4.3) and \(G_{P_1}(P_2)\) be as in (1.12) \((|P_{1}-P_{2}|\) represents the distance between two points \(P_{1}\) and \(P_{2}\) after through a stereographic projection). Then, we have,

$$\begin{aligned}&\int _{{\mathbb {S}}^3}\delta _{P_1, t_1}^2\delta _{P_2,t_2} =4\pi |{\mathbb {S}}^2|\frac{G_{P_1}(P_2)}{t_1t_2} +O(\tau ^{3/2}), \end{aligned}$$
(A.1)
$$\begin{aligned}&\int _{{\mathbb {S}}^3}\delta _{P_1,t_1}^{2-\tau }\delta _{P_2,t_2}=O(\tau ), \end{aligned}$$
(A.2)
$$\begin{aligned}&\frac{\partial }{\partial t_{1}} \int _{{\mathbb {S}}^3}\delta _{P_1,t_{1}}^2\delta _{P_2, t_{2}}= -4\pi |{\mathbb {S}}^2|\frac{G_{P_1}(P_2)}{t_1^2t_2}+O(\tau ^2), \end{aligned}$$
(A.3)
$$\begin{aligned}&\frac{\partial }{\partial t_{1}} \int _{{\mathbb {S}}^3}\delta _{P_2, t_{2}}\delta _{P_1,t_{1}}^{2-\tau } =\int _{{\mathbb {S}}^3}\delta _{P_2,t_2}\delta _{P_1,t_1}^{2}+O(\tau ^{5/2}|\log \tau |), \end{aligned}$$
(A.4)
$$\begin{aligned}&\frac{\partial }{\partial t_1} \int _{{\mathbb {S}}^3} \delta _{P_2, t_2}^{2-\tau }\delta _{P_1, t_1}= \frac{\partial }{\partial t_1}\int _{{\mathbb {S}}^3} \delta _{P_2, t_2}^{2}\delta _{P_1, t_1}+O(\tau ^{5/2}|\log \tau |), \end{aligned}$$
(A.5)
$$\begin{aligned}&\int _{{\mathbb {S}}^3}|P-P_1|^2\delta _{P_1,t_1}^{3-\tau } =\frac{1}{t_{1}^2}\frac{3\pi }{2}|{\mathbb {S}}^2| +O(\tau ^{2}| \log \tau |), \end{aligned}$$
(A.6)
$$\begin{aligned}&\frac{\partial }{\partial t_1}\int _{{\mathbb {S}}^3} \delta ^{3-\tau }_{P_1,t_1}= -\frac{\tau }{t_1}\frac{\pi }{2}|{\mathbb {S}}^2| +O(\tau ^{5/2}|\log \tau |), \end{aligned}$$
(A.7)
$$\begin{aligned}&\frac{\partial }{\partial t_1} \int _{{\mathbb {S}}^3} |P-P_1|^2\delta _{P_1,t_1}^{3-\tau }= - \frac{3\pi }{t_{1}^3}|{\mathbb {S}}^2|+O(\tau ^{5/2}|\log \tau |). \end{aligned}$$
(A.8)

Proof

Because the computation is elementary and routine, we only take (A.2) as an example to prove.

By the stereographic projection, we have

$$\begin{aligned} \int _{{\mathbb {S}}^3}\delta _{P_1, t_1}^{2-\tau }\delta _{P_2,t_2}&= \int _{{\mathbb {R}}^3} \left( \frac{2t_{1}}{(1+t_1^2|y-y_1|^2)}\right) ^{2-\tau } \left( \frac{2t_{2}}{(1+t_2^2|y-y_2|^2)}\right) \left( \frac{2}{1+|y|^2}\right) ^{\tau }\,dy\\&\le C_1\int _{{\mathbb {R}}^3} \frac{t_1^{2-\tau }t_2}{(1+t_1^2|y-y_1|^2)^{2-\tau } (1+t_2^2|y-y_2|^2)}\,dy=:C_1\widetilde{{\mathcal {I}}}_{2-\tau }. \end{aligned}$$

Let

$$\begin{aligned} a_{12}=\frac{y_2-y_1}{2};\quad z =y-\frac{y_1+y_2}{2}. \end{aligned}$$

Then we have

$$\begin{aligned} \widetilde{{\mathcal {I}}}_{2-\tau }=\frac{1}{t_1^{2-\tau }t_2}\int _{{\mathbb {R}}^3} \frac{1}{(\frac{1}{t_1^2}+|z+a_{12}|^2)^{2-\tau } (\frac{1}{t_2^2}+|z-a_{12}|^2)}\,dy. \end{aligned}$$

By symmetry arguments, we may assume

$$\begin{aligned} t_2\le t_1. \end{aligned}$$

Because we have

$$\begin{aligned} t_1t_2|a_{12}|^2\ge C\frac{t_1}{t_2}, \quad \text{ with } C \text{ a } \text{ large } \text{ constant }. \end{aligned}$$

Thus,

$$\begin{aligned} t_2^2|a_{12}|^2\ge C;\quad t_1^2|a_{12}|^2\ge C, \end{aligned}$$

and it follows that if \( |z+a_{12}|\le \frac{1}{t_1} \le |a_{12}|\), then \(|z-a_{12}|\ge |a_{12}|\); and if \(|z-a_{12}|\le \frac{1}{t_2}\le |a_{12}|\), then \(|z+a_{12}|\ge |a_{12}|\).

Then

$$\begin{aligned} \widetilde{{\mathcal {I}}}_{2-\tau }&\le \frac{1}{t_1^{2-\tau }t_2} \Big \{ \int \limits _{|z+a_{12}|\le \frac{1}{t_1}}\frac{C_1 t_1^{2(2-\tau )}}{(\frac{1}{t_2^2}+|a_{12}|^2)} +\int \limits _{|z-a_{12}|\le \frac{1}{t_2}}\frac{C_1 t_2^2}{(\frac{1}{t_1^2}+|a_{12}|^2)^{2-\tau }} \Big \}\nonumber \\&\quad +\frac{2^3}{t_1^{2-\tau }t_2} \Big \{ \int _{\begin{array}{c} |z+a_{12}|>\frac{1}{t_1} \\ |z-a_{12}|>\frac{1}{t_2} \end{array}} \frac{C_1}{|z+a_{12}|^{2(2-\tau )}|z-a_{12}|^2}\,dz \Big \}, \end{aligned}$$
(A.9)

where \(C_1\) is a constant.

Since

$$\begin{aligned}&\int _{\begin{array}{c} |z+a_{12}|>\frac{1}{t_1} \\ |z-a_{12}|>\frac{1}{t_2} \end{array}} \frac{1}{|z+a_{12}|^{2(2-\tau )}|z-a_{12}|^2}\,dz\nonumber \\&\quad \le \int \limits _{\frac{1}{t_1}<|z+a_{12}|\le |a_{12}|}\frac{dz}{|z+a_{12}|^{2(2-\tau )}|a_{12}|^2} +\int \limits _{\frac{1}{t_2}<|z-a_{12}|\le |a_{12}|}\frac{dz}{|a_{12}|^{2(2-\tau )}|z-a_{12}|^2}\nonumber \\&\qquad +\int _{\begin{array}{c} |z+a_{12}|>|a_{12}| \\ |z-a_{12}|>|a_{12}| \end{array}} \frac{dz}{|z+a_{12}|^{2(2-\tau )}|z-a_{12}|^2}. \end{aligned}$$
(A.10)

It is easy to see that if \(|z\pm a_{12}|\le |a_{12}|\), then \(|z\mp a_{12}| \ge |a_{12}|\) again, and if \(|z+a_{12}|\ge |a_{12}|\) and \(|z-a_{12}|\ge |a_{12}|\), then \(|z-a_{12}|\ge \frac{1}{C_2^{\frac{1}{3}}}|z+a_{12}|\) with \(C_2\) large enough. if \(|z-a_{12}|>|a_{12}|\), then \(|z-a_{12}|>|a_{12}|>|z+a_{12}|\), we have

$$\begin{aligned}&\int _{\begin{array}{c} |z+a_{12}|>|a_{12}| \\ |z-a_{12}|>|a_{12}| \end{array}} \frac{dz}{|z+a_{12}|^{2(2-\tau )}|z-a_{12}|^2}\\&\le C_2 \int _{|z+a_{12}|\ge |a_{12}|}\frac{dz}{|z+a_{12}|^{2(2-\tau )+2}} =\frac{C_2|{\mathbb {S}}^2|}{(3-2\tau )}\frac{1}{|a_{12}|^{3-2\tau }}. \end{aligned}$$

On the other hand,

$$\begin{aligned}&\frac{1}{|a_{12}|^2}\int \limits _{\frac{1}{t_1}<|z+a_{12}|\le |a_{12}|}\frac{dz}{|z+a_{12}|^{2(2-\tau )}} \nonumber \\&=\frac{|{\mathbb {S}}^2|}{|a_{12}|^2}\int _{\frac{1}{t_1}}^{|a_{12}|} \frac{1}{r^{2-2\tau }}dr =\frac{|{\mathbb {S}}^2|}{|a_{12}|^2}\frac{1}{2\tau -1}(|a_{12}|^{2\tau -1}-\frac{1}{t_1^{2\tau -1}}), \end{aligned}$$
(A.11)

and

$$\begin{aligned}&\frac{1}{|a_{12}|^{2(2-\tau )}}\int \limits _{\frac{1}{t_2}<|z-a_{12}|\le |a_{12}|}\frac{dz}{|z-a_{12}|^2} \nonumber \\&=\frac{|{\mathbb {S}}|^2}{|a_{12}|^{2(2-\tau )}}\int \limits _{\frac{1}{t_2}<|z-a_{12}| \le |a_{12}|}\frac{1}{r}dr =\frac{|{\mathbb {S}}|^2}{|a_{12}|^{2(2-\tau )}}(|a_{12}|-\frac{1}{t_2}). \end{aligned}$$
(A.12)

By (A.10), (A.11) and (A.12), we have

$$\begin{aligned}&\frac{2^3}{t_1^{2-\tau }t_2}\int _{\begin{array}{c} |z+a_{12}|>\frac{1}{t_1} \\ |z-a_{12}|>\frac{1}{t_2} \end{array}} \frac{1}{|z+a_{12}|^{2(2-\tau )}|z-a_{12}|^2}\,dz\nonumber \\&\le C\left( \frac{1}{\mu ^{\frac{3}{2}-\tau }t_2^{\tau }} +\frac{1}{\mu t_1^{\tau }} +\frac{1}{\mu ^{\frac{3}{2}-\tau }t_2^{\tau }} +\frac{1}{\mu ^{2-\tau }t_2^{\tau }} +\frac{1}{\mu ^{\frac{3}{2}-\tau }t_2^{\tau }} \right) \nonumber \\&\le C(\tau ^{\frac{3}{2}}+\tau +\tau ^{2})=O(\tau ), \end{aligned}$$
(A.13)

recalling that (A.9), one has

$$\begin{aligned}&\frac{2^3}{t_1^{2-\tau }t_2} \int \limits _{|z+a_{12}|\le \frac{1}{t_1}}\frac{C_1 t_1^{2(2-\tau )}}{(\frac{1}{t_2^2}+|a_{12}|^2)}\nonumber \\&\le C\frac{1}{t_1^{\tau }(\frac{t_1}{t_2}+\mu )} =O\left( \mu ^{-1}\right) =O( \tau ), \end{aligned}$$
(A.14)

similarly,

$$\begin{aligned} \frac{2^3}{t_1^{2-\tau }t_2} \int \limits _{|z-a_{12}|\le \frac{1}{t_2}}\frac{C_1 t_2^2}{(\frac{1}{t_1^2}+|a_{12}|^2)^{2-\tau }} =O\left( \mu ^{-(2-\tau )}\right) =O( \tau ^{2}). \end{aligned}$$
(A.15)

Thus, by (A.13), (A.14) and (A.15), we obtain (A.2). \(\square \)

Lemma A.5

Under the hypotheses of Lemma A.4, in addition that \(\Gamma _{1},\Gamma _{2}\) are positive constants independent of \(\tau .\) Then, we have,

$$\begin{aligned}&\langle \delta _{P_{1}, t_{1}}, \delta _{P_{1}, t_{1}}\rangle = |{\mathbb {S}}^3|,\quad \Bigg \langle \frac{\partial \delta _{P_1,t_1}}{\partial P_1^{(\ell )}}, \frac{\partial {\delta _{P_1,t_1}}}{\partial P_1^{(\ell )}} \Bigg \rangle =\Gamma _{1}t_1^2, \end{aligned}$$
(A.16)
$$\begin{aligned}&\Bigg \langle \frac{\partial \delta _{P_1, t_1}}{\partial t_{1}}, \frac{\partial \delta _{P_1, t_1}}{\partial t_{1}} \Bigg \rangle =\Gamma _2 t_1^{-2}, \end{aligned}$$
(A.17)
$$\begin{aligned}&\langle \delta _{P_{1}, t_{1}}, \delta _{P_{2}, t_{2}}\rangle =O(\tau ), \end{aligned}$$
(A.18)
$$\begin{aligned}&\Vert \delta _{P_1,t_1}^{1-\tau }\delta _{P_2, t_2}\Vert _{L^{3/2}({\mathbb {S}}^3)}=O(\tau |\log \tau |), \end{aligned}$$
(A.19)
$$\begin{aligned}&\Big \Vert \delta _{P_2,t_2}^{1-\tau } \frac{\partial \delta _{P_1,t_1}}{\partial t_1}\Big \Vert _{L^{3/2}({\mathbb {S}}^3)} = O(\tau ^{3/2}|\log \tau |), \end{aligned}$$
(A.20)
$$\begin{aligned}&\Big \Vert \delta _{P_1,t_1}^{1-\tau }\delta _{P_{2}, t_{2}}\frac{\partial \delta _{P_1, t_1}}{\partial t_1}\Big \Vert _{L^1({\mathbb {S}}^3)}=O(\tau ^{3/2}|\log \tau |), \end{aligned}$$
(A.21)
$$\begin{aligned} \begin{aligned}&\Vert \delta _{P_1,t_1}^{2-\tau }-\delta _{P_1, t_1}^2 \Vert _{L^{3/2}({\mathbb {S}}^3)}= O(\tau |\log \tau |),\\&\Vert \delta _{P_1,t_1}^{1-\tau }-\delta _{P_1, t_1} \Vert _{L^{3}({\mathbb {S}}^3)} =O(\tau |\log \tau |), \end{aligned} \end{aligned}$$
(A.22)
$$\begin{aligned} \Vert \delta _{P_1,t_1}^{3-\tau }-\delta _{P_1,t_1}^3\Vert _{L^{1}({\mathbb {S}}^3)} =O(\tau |\log \tau |), \end{aligned}$$
(A.23)
$$\begin{aligned} \begin{aligned}&\big \Vert |P-P_1|\delta _{P_1, t_1}^{2}\big \Vert _{L^{3/2}({\mathbb {S}}^3)}=O( \tau ^{1/2}),\\&\big \Vert |P-P_1|^2 \delta ^2_{P_{1}, t_1}\big \Vert _{L^{3/2}({\mathbb {S}}^3)} =O(\tau ), \end{aligned} \end{aligned}$$
(A.24)
$$\begin{aligned} \int _{{\mathbb {S}}^3}|P-P_1|^3\delta _{P_1,t_1} \frac{\partial \delta _{P_1,t_1}}{\partial t_1}=O(\tau ^2). \end{aligned}$$
(A.25)

Proof

Because the computation is elementary and routine, we only take (A.16) and (A.17) as an example to prove.

Proof of:(A.16)

$$\begin{aligned} \left\langle \delta _{P_{1}, t_{1}}, \delta _{P_{1}, t_{1}}\right\rangle =\int _{{\mathbb {S}}^3}\delta _{P_{1},t_{1}}^{3}&=2^3\int _{{\mathbb {R}}^3} \frac{t_1^3}{(1+t_1^2|y|^2)^3}\,dy\\&=2^3|{\mathbb {S}}^2|\int _{0}^{\infty }\frac{r^2}{(1+r^2)^3}\,dr =|{\mathbb {S}}^3|. \end{aligned}$$

Since \(P_{\sigma }\delta _{P_{1},t_{1}}=\delta _{P_1,t_{1}}^2\), then \( P_{\sigma }\big (\frac{\partial \delta _{P_{1},t_1}}{\partial P_1}\big ) =2\delta _{P_1,t_1}\big (\frac{\partial \delta _{P_{1},t_1}}{\partial P_1}\big ).\) It follows that

$$\begin{aligned} \Bigg \langle \frac{\partial \delta _{P_1, t_1}}{\partial P_1^{(\ell )}}, \frac{\partial \delta _{P_1, t_1}}{\partial P_{1}^{(\ell )}} \Bigg \rangle&=\int _{{\mathbb {S}}^3}\Big (P_{\sigma }\frac{\partial \delta _{P_{1},t_1}}{\partial P_1^{(\ell )}}\Big ) \frac{\partial \delta _{P_{1},t_1}}{\partial P_1^{(\ell )}}\\&=\int _{{\mathbb {S}}^3} 2\delta _{P_1,t_1}\Big (\frac{\partial \delta _{P_{1},t_1}}{\partial P_1^{(\ell )}}\Big )^2\\&=\int _{{\mathbb {R}}^3}\frac{2t_1}{1+t_1^2|y|^2} \Big [\frac{4t_1^3(y)^{(\ell )}}{(1+t_1^2|y|^2)^2} \Big ]^2 dy\\&=2^5\int _{{\mathbb {R}}^3}\frac{t_1^{2}(x^{(\ell )})^2}{(1+|x|^2)^5}=\Gamma _{1}t_1^{2}. \end{aligned}$$

where \(\Gamma _{1}\) is a constant.

Proof of:(A.17) Since \(P_{\sigma }\delta _{P_{1},t_{1}}=\delta _{P_1,t_{1}}^2,\) then \( P_{\sigma }\big (\frac{\partial \delta _{P_{1},t_1}}{\partial t_1}\big ) =2\delta _{P_1,t_1}\big (\frac{\partial \delta _{P_{1},t_1}}{\partial t_1}\big ). \) It follows that

$$\begin{aligned}&\int _{{\mathbb {S}}^3}2\delta _{P_1,t_1} \Big (\frac{\partial \delta _{P_1,t_1}}{\partial t_1}\Big )^2\\&\quad =2\int _{{\mathbb {R}}^3} \frac{2t_1}{1+t_1^2|y|^2} \Big ( \frac{2}{1+t_1^2|y|^2}-\frac{2^2t_1^2|y|^2}{(1+t_1^2|y|^2)^2}\Big )^2\,dy\\&\quad =2^4t_1^{-2} \int _{{\mathbb {R}}^3}\frac{1}{(1+|x|^2)^3} \Big ( 1-\frac{2|x|^2}{1+|x|^2}\Big )^2\,dy:=\Gamma _2t_1^{-2} \end{aligned}$$

where \(\Gamma _2\) is a constant. \(\square \)

Lemma A.6

Let \(\varepsilon _0, \tau , A\) be as in Lemma A.4, \(P_{1},P_2,P_3 \in {\mathbb {S}}^3\) satisfy \(|P_i-P_j|\ge \varepsilon _0,\) \(i\ne j,\) and \(A^{-1}\tau ^{-1/2}<t_1,t_2,t_3\le A\tau ^{-1/2}.\) Then, we have,

$$\begin{aligned} \Big |\frac{\partial }{\partial P_{1}}\int _{{\mathbb {S}}^3} \delta _{P_{1},t_{1}}^{3-\tau }\Big |=O(\tau ^{1/2}),\quad \Big \Vert \delta _{P_2,t_2} \frac{\partial \delta _{P_1,t_1}}{\partial P_1} \Big \Vert _{L^{3/2}({\mathbb {S}}^3)}=O( \tau ^{1/2}|\log \tau |), \end{aligned}$$
(A.26)
$$\begin{aligned} \Big |\frac{\partial }{\partial P_1} \int _{{\mathbb {S}}^3}\delta _{P_2, t_2}^{2-\tau }\delta _{P_1, t_1}\Big |=O(\tau ^{1/2}),\quad \Big |\frac{\partial }{\partial P_1} \int _{{\mathbb {S}}^3}\delta _{P_2, t_2}^2\delta _{P_1, t_1}\Big |=O(\tau ^{1/2}), \end{aligned}$$
(A.27)
$$\begin{aligned}&\Big \Vert \delta _{P_2,t_2}^{1-\tau }\delta _{P_{3}, t_{3}} \frac{\partial \delta _{P_1,t_1}}{\partial P_1} \Big \Vert _{L^1({\mathbb {S}}^3)} =O(\tau ^{1/2}|\log \tau |). \end{aligned}$$
(A.28)

Lemma A.7

In addition to the hypotheses of Lemma A.4, we assume that \( K\in C^{1}({\mathbb {S}}^3)\). Then

$$\begin{aligned} \frac{\partial }{\partial t_1}\int _{{\mathbb {S}}^3}(K(P)-K(P_2))\delta _{P_2, t_2}^{2-\tau } \delta _{P_1, t_1}= O(\tau ^2). \end{aligned}$$
(A.29)

Lemma A.8

In addition to the hypotheses of Lemma A.7, we assume that \( v\in E_{P_1,t_1}\). Then

$$\begin{aligned}&\int _{{\mathbb {S}}^3} (K(P)-K(P_1))\delta _{P_1,t_1}^{1-\tau } \frac{\partial \delta _{P_1,t_1}}{\partial P_{1}}v =O(\tau ^{1/2}|\log \tau | \Vert v\Vert _{\sigma }). \end{aligned}$$
(A.30)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tang, Z. & Zhou, N. On a Fractional Nirenberg Problem Involving the Square Root of the Laplacian on \({\mathbb {S}}^{3}\). J Geom Anal 33, 227 (2023). https://doi.org/10.1007/s12220-023-01291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01291-0

Keywords

Mathematics Subject Classification

Navigation