Skip to main content
Log in

Global Gradient Estimates of Very Weak Solutions for a General Class of Quasilinear Elliptic Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We are concerned with global gradient estimates of very weak solutions for a general class of quasilinear elliptic equations with nonstandard growth. We establish such estimates under basic structure assumptions on the nonlinearity and natural geometric assumption on the complement of the bounded domain. Our approach is based on a generalized Lipschitz truncation alongside a generalized self-improving property of thick sets. This work provides a careful analysis of the thickness described in Adimurthi and Phuc (Calc Var Partial Differ Equ 54:3107–3139, 2015), Harjulehto and Hästö (Z Anal Anwend 38(1):73–96, 2019), Heinonen et al (Potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke math. J. 136(2), 285–320 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Adimurthi, K., Phuc, N.: Global Lorentz and Lorentz-Morrey estimates below the natural exponent for quasilinear equations. Calc. Var. Partial Differ. Equ. 54(3), 3107–3139 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Baroni, P.: Riesz potential estimates for a general class of quasilinear equations. Calc. Var. Partial Differ. Equ. 53(3–4), 803–846 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Björn, J., Macmanus, P., Shanmugalingam, N.: Fat sets and pointwise boundary estimates for \(p\)-harmonic functions in metric spaces. J. Anal. Math. 85, 339–369 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87(1), 149–169 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17(3–4), 641–655 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Byun, S., Cho, Y.: Nonlinear gradient estimates for generalized elliptic equations with nonstandard growth in nonsmooth domains. Nonlinear Anal. 140, 145–165 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Byun, S., Lim, M.: Gradient estimates of very weak solutions to general quasilinear elliptic equations. J. Funct. Anal. 283(10), 109668 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Byun, S., Wang, L.: Nonlinear gradient estimates for elliptic equations of general type. Calc. Var. Partial Differ. Equ. 45(3–4), 403–419 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51(1), 1–21 (1998)

    MATH  Google Scholar 

  12. Calderón, A.P., Zygmund, A.: Peral, on the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)

    MathSciNet  MATH  Google Scholar 

  13. Chlebicka, I.: A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces. Nonlinear Anal. 175, 1–27 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Chlebicka, I.: Gradient estimates for problems with Orlicz growth. Nonlinear Anal. 194, 111364 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Chlebicka, I., Giannetti, F., Zatorska-Goldstein, A.: Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or \(L^{1}\) data. J. Math. Anal. Appl. 479(1), 185–213 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Chlebicka, I., Giannetti, F., Zatorska-Goldstein, A.: Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth. (2020). arXiv:2006.02172

  17. Cho, Y.: Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators. J. Differ. Equ. 264(10), 6152–6190 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Cianchi, A., Maz’ya, V.: Quasilinear elliptic problems with general growth and merely integrable, or measure, data. Nonlinear Anal. 164, 189–215 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Colombo, M., Tione, R.: Non-classical solutions to the p-Laplace equation. Preprint (2022)

  20. Diening, L., Christian, K., Süli, E.: Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51(2), 984–1015 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20(3), 523–556 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Diening, L., Harjulehto, P., Hästö, P., R\(\mathring{\rm u}\)žička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  23. Diening, L., Schwarzacher, S., Stroffolini, B., Verde, A.: Parabolic Lipschitz truncation and caloric approximation. Calc. Var. Partial Differ. Equ. 56(4), 120 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Diening, L., Stroffolini, B., Verde, A.: The \(\phi \)-harmonic approximation and the regularity of \(\phi \)-harmonic maps. J. Differ. Equ. 253(7), 1943–1958 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Donaldson, T.K., Trudinger, N.S.: Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8, 52–75 (1971)

    MathSciNet  MATH  Google Scholar 

  26. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in advanced math. CRC Press, Ann Arbor (1992)

    MATH  Google Scholar 

  27. Giusti, E.: Direct methods in the Calculus of variations. World Scientific Publishing Co., Inc, River Edge (2003)

    MATH  Google Scholar 

  28. Harjulehto, P., Hästö, P.: Boundary regularity under generalized growth condition. Z. Anal. Anwend. 38(1), 73–96 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Heinonen, J., Kilpeläinen, K., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  30. Iwaniec, T.: Projections onto gradient fields and \(L^{p}\)-estimates for degenerated elliptic operators. Stud. Math. 75(3), 293–312 (1983)

    MATH  Google Scholar 

  31. Iwaniec, T., Sbordone, C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Kilpeläinen, T.T., Koskela, P.: Global integrability of the gradients of solutions to partial differential equations. Nonlinear Anal. 23(7), 899–909 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Kinnunen, J., Lewis, J.L.: Very weak solutions of parabolic systems of \(p\)-Laplacian type. Ark. Mat. 40(1), 105–132 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Kinnunen, J., Zhou, S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equ. 24(11–12), 2043–2068 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Lewis, J.L.: On very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18(9–10), 1515–1537 (1993)

    MathSciNet  MATH  Google Scholar 

  36. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Uralt́seva for elliptic equations. Commun. Partial Differ. Equ. 16(2–3), 311–361 (1991)

    MATH  Google Scholar 

  37. Maly, J., Ziemer, W.P.: Fine regularity of solutions of elliptic partial differential equations, mathematical surveys and monographs, 51st edn. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  38. Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250(5), 2485–2507 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Mikkonen, P.: On the Wolff potential and quasilinear elliptic equations involving measures. Ann. Acad. Sci. Fenn. Math. Diss. 104, 1–71 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Mingione, G.: Gradient estimates below the duality exponent. Math. Ann. 346(3), 571–627 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Mingione, G.: Nonlinear aspects of Calderón-Zygmund theory. Jahresber. Dtsch. Math.-Ver. 112(3), 159–191 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Phuc, N.C.: On Calderón-Zygmund theory for \(p\)- and \(\cal{A} \)-superharmonic functions Calc. Var. Partial Differ. Equ. 46(1–2), 165–181 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Rao, M.M., Ren, J.D.: Theory of Orlicz spaces. Marcel Dekker Inc., New York (1991)

    MATH  Google Scholar 

  44. Stein, E.M.: Harmonic analysis real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  45. Showalter, R.E.: Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, vol. 49. AMS, Providence (1997)

    Google Scholar 

  46. Verde, A.: Calderón-Zygmund estimates for systems of \(\phi \)-growth. J. Convex Anal. 18(1), 67–84 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for the careful reading of the earlier version and providing helpful comments and suggestions which improved the manuscript. S. Byun was supported by the National Research Foundation of Korea Grant (NRF-2021R1A4A1027378). M. Lim was supported by the National Research Foundation of Korea Grant (NRF-2022R1A2C1009312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minkyu Lim.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Lim, M. Global Gradient Estimates of Very Weak Solutions for a General Class of Quasilinear Elliptic Equations. J Geom Anal 33, 156 (2023). https://doi.org/10.1007/s12220-023-01210-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01210-3

Keywords

Mathematics Subject Classification

Navigation