Skip to main content
Log in

Existence of Normalized Positive Solutions for a Class of Nonhomogeneous Elliptic Equations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of normalized positive solutions to the following Schrödinger equation with a perturbation

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u + \lambda u= |u|^{p-2}u+ h(x) \quad &{} \hbox {in}\;{\mathbb {R}}^N, \\ \int _{{\mathbb {R}}^N}u^2 {\text {d}}x =a, \ \ u \in H^1({\mathbb {R}}^N). \\ \end{array}\right. } \end{aligned}$$

We treat two cases. First, for the mass-subcritical case \(2<p < 2+ \frac{4}{N}\), we show that there exists a global minimizer with negative energy for arbitrarily positive perturbation. Secondly, for the mass-supercritical case \(2+ \frac{4}{N}<p <2^*\) where \(2^*=\frac{2N}{N-2}\) if \(N\geqslant 3\) and \(2^*= + \infty \) if \(N=1,2\), when h is small radial positive function, we prove the existence of a mountain pass solution with positive energy. It seems this is the first contribution to the normalized solution for such a perturbed equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S., Tanaka, K.: Four positive solutions for the semilinear elliptic equation: \(-\Delta u+u=a(x)u^p+f(x)\) in \({\mathbb{R} }^N\). Calc. Var. Partial Differ. Equ. 11(1), 63–95 (2000)

    Article  MATH  Google Scholar 

  2. Adachi, S., Tanaka, K.: Existence of positive solutions for a class of nonhomogeneous elliptic equations in \({\mathbb{R} }^N\). Nonlinear Anal. 48(5), 685–705 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahri, A., Berestycki, H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267(1), 1–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. (Basel) 100(1), 75–83 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Molle, R., Rizzi, M., Verzini, G.: Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Partial Differ. Equ. 46(9), 1729–1756 (2021)

    Article  MATH  Google Scholar 

  6. Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct. Anal. 280(11), 108989 (2021)

    Article  MATH  Google Scholar 

  7. Cao, D., Zhou, H.: Multiple positive solutions of nonhomogeneous semilinear elliptic equations in \({\mathbb{R} }^N\). Proc. R. Soc. Edinb. A 126(2), 443–463 (1996)

    Article  MATH  Google Scholar 

  8. Cazenave, T.: Semilinear Schrödinger equations. American Mathematical Society, Providence (2003)

  9. Chen, S., Tang, X.: Normalized solutions for nonautonomous Schrödinger equations on a suitable manifold. J. Geom. Anal. 30(2), 1637–1660 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, Y., Li, Y.: Existence of multiple positive solutions for a semilinear elliptic equation. Adv. Differ. Equ. 2(3), 361–382 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Ghoussoub, N.: Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)

  12. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirano, N.: Existence of entire positive solutions for nonhomogeneous elliptic equations. Nonlinear Anal. 29(8), 889–901 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirano, N., Zou, W.: A perturbation method for multiple sign-changing solutions. Calc. Var. Partial Differ. Equ. 37(1), 87–98 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ikoma, N., Miyamoto, Y.: Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities. Calc. Var. Partial Differ. Equ. 59(2), 1–20 (2020)

    Article  MATH  Google Scholar 

  16. Ikoma, N., Tanaka, K.: A note on deformation argument for \(L^2\) normalized solutions of nonlinear Schrödinger equations and systems. Adv. Differ. Equ. 24(11–12), 609–646 (2019)

    MATH  Google Scholar 

  17. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeanjean, L.: Two positive solutions for a class of nonhomogeneous elliptic equations. Differ. Integral Equ. 10(4), 609–624 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Jeanjean, L., Lu, S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59(5), 1–43 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kwong, M.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \(\mathbb{R} ^N\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  MATH  Google Scholar 

  21. Lancelotti, S., Molle, R.: Normalized positive solutions for Schrödinger equations with potentials in unbounded domains. (2022). arXiv preprint arXiv:2208.12090

  22. Li, H., Zou, W.: Normalized ground states for semilinear elliptic systems with critical and subcritical nonlinearities. J. Fixed Point Theory Appl. 23(3), 1–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lieb, E., Loss, M.: Analysis, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  24. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Molle, Riccardo, Riey, Giuseppe, Verzini, Gianmaria: Normalized solutions to mass supercritical Schrödinger equations with negative potential. J. Differ. Equ. 333, 302–331 (2022)

    Article  MATH  Google Scholar 

  26. Ramos, M., Tehrani, H.: Perturbation from symmetry for indefinite semilinear elliptic equations. Manuscr. Math. 128(3), 297–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscr. Math. 143(1), 221–237 (2014)

    Article  MATH  Google Scholar 

  28. Soave, N.: Normalized ground states for the nls equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soave, N.: Normalized ground states for the nls equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610–108652 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283(6), 46 (2022)

    Article  MATH  Google Scholar 

  31. Willem, M.: Minimax Theorems. Birkhauser, Basel (1996)

  32. Yang, Z., Qi, S., Zou, W.: Normalized solutions of nonlinear Schrödinger equations with potentials and non-autonomous nonlinearities. J. Geom. Anal. 32(5), 27 (2022)

    Article  MATH  Google Scholar 

  33. Zhong, X., Zou, W.: A new deduction of the strict sub-additive inequality and its application: ground state normalized solution to Schrödinger equations with potential. Differ. Integral Equ. 36(1–2), 133–160 (2023)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees very much for careful reading the manuscript and valuable comments.

Funding

Funding was supported by NSFC-12171265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zou, W. Existence of Normalized Positive Solutions for a Class of Nonhomogeneous Elliptic Equations. J Geom Anal 33, 147 (2023). https://doi.org/10.1007/s12220-023-01199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01199-9

Keywords

Mathematics Subject Classification

Navigation