Skip to main content
Log in

A perturbation method for multiple sign-changing solutions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We develop a perturbation method for non-even functionals which produces prescribed number of sign-changing solutions. The abstract theory is applied to the perturbed subcritical elliptic equation and the perturbed Brézis–Nirenberg critical exponent problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson F.V., Brézis H., Peletier L.A.: Nodal solutions of elliptic equations with critical Sobolev exponents. J. Differ. Equ. 85, 151–170 (1990)

    Article  MATH  Google Scholar 

  2. Bahri A.: Topological results on a certain class of functionals and applications. J. Funct. Anal. 41, 397–427 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bahri A., Berestycki H.: A perturbation method in critical point theory and applications. Trans. Am. Math. Soc. 267, 1–32 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bahri A., Lions P.L.: Morse-index of some mini–max crtitcal points. Comm. Pure Appl. Math. 41, 1027–1037 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartsch T.: Critical point theory on partially ordered Hilbert spaces. J. Funct. Anal. 186, 117–152 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartsch T., Liu Z., Weth T.: Sign changing solutions of superlinear Schrödinger equations. Comm. Partial Differ. Equ. 29, 25–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bolle P., Ghoussoub N., Tehrani H.: The multiplicity of solutions in non-homogeneous boundary value problems. Manus. math. 101, 325–350 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brézis H.: On a characterization of flow invariant sets. Comm. Pure. Appl. Math. 23, 261–263 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brézis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pure Appl. 58, 137–151 (1978)

    Google Scholar 

  10. Brézis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cerami G., Fortunato D., Struwe M.: Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poinvaré-Analyse, Nonlinear 1, 341–350 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Cerami G., Solimini S., Struwe M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69, 289–306 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chang, K.C.: Infinite-dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

  14. Clapp M., Weth T.: Multiple solutions for the Brezis–Nirenberg problem. Adv. Differ. Equ. 10, 463–480 (2005)

    MATH  MathSciNet  Google Scholar 

  15. Conti M., Merizzi L., Terracini S.: Remarks on variational methods and lower–upper solutions. NoDEA 6, 371–393 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Degiovanni M., Lancelotti S.: Perturbations of even nonsmooth functionals. Differ. Int. Equ. 8, 981–992 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Devillanova G., Solimini S.: Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Differ. Equ. 7, 1257–1280 (2002)

    MATH  MathSciNet  Google Scholar 

  18. de Figueiredo D.G., Lions P.L., Nussbaum R.D.: A priori estimates and existence results for positive solutions of semilinear elliptic equations. J. Math. Pure Appl. 61, 41–63 (1981)

    Google Scholar 

  19. Fortunato D., Jannelli E.: Infinitely many solutions for some nonlinear elliptic problems in symmetrical domains. Proc. R. Soc. Edinb. 105A, 205–213 (1987)

    MathSciNet  Google Scholar 

  20. Li S., Wang Z.Q.: Ljusternik–Schnirelman theory in partially ordered Hilbert spaces. Trans. Am. Math. Soc. 354, 3207–3227 (2002)

    Article  MATH  Google Scholar 

  21. Li S., Liu Z.: Perturbations from symmetric elliptic boundary value problems. J. Differ. Equ. 185, 271–280 (2002)

    Article  MATH  Google Scholar 

  22. Long Y.: Multiple solutions of perturbed superquadratic second order Hamiltonian systems. Trans. Am. Math. Soc. 311, 749–780 (1989)

    Article  MATH  Google Scholar 

  23. Rabinowitz P.: Multiple critical points of perturbed symmetric functionals. Trans. Am. Math. Soc. 272, 753–769 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. 65, Amer. Math. Soc., Providence (1986)

  25. Rosenbljum, G.: The distribution of the discrete spectrum for singular differential operator. J. Sov. Math. Dokl. 13(1972), 245–249; translation from Dokl. Akad. Nauk SSSR 202(1972), 1012–1015

    Google Scholar 

  26. Schechter, M., Zou, W.: On the Brézis–Nirenberg Problem, preprint

  27. Schechter M., Zou W.: Sign-changing critical points of linking type theorems. Trans. Am. Math. Soc. 358, 5293–5318 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Struwe M.: Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems. Manus. Math. 32, 335–364 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Struwe, M.: Variational Methods. Springer, Heidelberg (1999)

    Google Scholar 

  30. Tanaka K.: Morse indices at critical points related to the symmetric mountain pass theorem and applications. Comm. Partial Differ. Equ. 14, 99–128 (1989)

    Article  MATH  Google Scholar 

  31. Tehrani H.T.: Infinitely many solutions for indefinite semilinear elliptic equations without symmetry. Comm. Partial Differ. Equ. 21, 541–557 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zou, W.: Sign-changing critical point theory. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zou.

Additional information

Communicated by A. Malchiodi.

N. Hirano was supported in part by Yokohama Indus. Soc. and W. Zou was supported by NSFC (10871109) and Yokohama Indus. Soc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, N., Zou, W. A perturbation method for multiple sign-changing solutions. Calc. Var. 37, 87–98 (2010). https://doi.org/10.1007/s00526-009-0253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0253-2

Mathematics Subject Classification (2000)

Navigation