Skip to main content
Log in

Exponential Stability for the 2D Wave Model with Localized Memory in a Past History Framework and Nonlinearity of Arbitrary Growth

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we discuss the asymptotic stability as well as the wellposedness of the viscoelastic damped wave equation posed on a bounded domain \(\Omega \) of \({\mathbb {R}}^2,\)

$$\begin{aligned} \partial _{t}^2u - \Delta u+ \displaystyle \int _0^\infty g(s)\hbox {div}[a(x)\nabla u(\cdot ,t-s)]\,\mathrm{{d}}s + b(x) \partial _{t}u + f(u)=0, \hbox { in }\Omega \times {\mathbb {R}}_+, \end{aligned}$$

subject to a locally distributed viscoelastic effect driven by a nonnegative function a(x) which is positive around the entire neighborhood of \(\partial \Omega \) and supplemented with a frictional damping \(b(x)\ge 0\) acting effectively on \(\partial A\) where \(A=\{x\in \Omega \big / a(x)=0\}\). Assuming that well-known geometric control condition \((\omega ^\prime , T_0)\) holds, supposing that the relaxation function g is bounded by a function that decays exponentially to zero and the function f possesses an arbitrary growth, we show that the solutions to the corresponding partial viscoelastic model decay exponentially to zero. We can also treat the focusing case for those solutions with energy less than d of the ground state, where d is the level of the Mountain Pass Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alabau-Boussouira, F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Alabau-Boussouira, F.: Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51, 51–105 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Alabau-Boussouira, F., Cannarsa, P.: A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Acad. Sci. Paris Ser. I 347, 867–872 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254, 1342–1372 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Aloui, L., Ibrahim, S., Nakanishi, K.: Exponential energy decay for damped Klein–Gordon equation with nonlinearities of arbitrary growth. Commun. Partial Differ. Equ. 36(5), 797–818 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Alves, C.O., Cavalcanti, M.M.: On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source. Calc. Var. Partial Differ. Equ. 34(3), 377–411 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    MathSciNet  MATH  Google Scholar 

  8. Appleby, J.A.D., Fabrizio, M., Lazzari, B., Reynolds, D.W.: On exponencial asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16(10), 1677–1694 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Bellassoued, M.: Decay of solutions of the elastic wave equation with a localized dissipation. Annales de la Faculté des Sciences de Toulouse XII(3), 267–301 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Burq, N., Gérard, P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. [A necessary and sufficient condition for the exact controllability of the wave equation]. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997). (in French)

    MathSciNet  MATH  Google Scholar 

  12. Burq, N., Gérard, P.: Contrôle Optimal des équations aux dérivées partielles. (2001) http://www.math.u-psud.fr/~burq/articles/coursX.pdf

  13. Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42(4), 1310–1324 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Cavalcanti, M.M., Cavalcanti, V.N.D., Fukuoka, R., Soriano, J.A.: Uniform stabilization of the wave equation on compact surfaces and locally distributed damping. Methods Appl. Anal. 15(4), 405–426 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Cavalcanti, M.M., Cavalcanti, V.N.D., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact surfaces and locally distributed damping-a sharp result. Trans. AMS 361(9), 4561–4580 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Cavalcanti, M.M., Cavalcanti, V.N.D., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result. Arch. Ration. Mech. Anal. 197(3), 925–964 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Cavalcanti, M.M., Cavalcanti, V.N.D., Nascimento, F.A.F.: Asymptotic stability of the wave equation on compact manifolds and locally distributed viscoelastic dissipation. Proc. Am. Math. Soc. 141(9), 3183–3193 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Cavalcanti, M.M., Cavalcanti, V.N.D., Lasiecka, I., Nascimento, F.A.F.: Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete Contin. Dyn. Syst. Ser. B 19(7), 1987–2012 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Cavalcanti, M.M., Fatori, L.H., Ma, T.F.: Attractors for wave equations with degenerate memory. J. Differ. Equ. 260(1), 56–83 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Cavalcanti, M.M., Cavalcanti, V.N.D., Silva, M.A.J., de Souza Franco, A.Y.: Exponential stability for the wave model with localized memory in a past history framework. J. Differ. Equ. 264, 6535–6584 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Cavalcanti, M.M., Cavalcanti, V.N.D., Fukuoka, R., Pampu, A.B., Astudillo, M.: Uniform decay rate estimates for the semilinear wave equation in inhomogeneous medium with locally distributed nonlinear damping. Nonlinearity 31(9), 4031–4064 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Cavalcanti, M.M., Cavalcanti, V.N.D., Martinez, V.H.G., Peralta, V.A., Vicente, A.: Stability for semilinear hyperbolic coupled system with frictional and viscoelastic localized damping. J. Differ. Equ. 269(10), 8212–8268 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Cavalcanti, M.M., Cavalcanti, V.N.D., Antunes, J.G.S., Vicente, A.: Stability for the wave equation in an unbounded domain with finite measure and with nonlinearities of arbitrary growth. J. Differ. Equ. 318, 230–269 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Chueshov, I., Eller, M., Lasiecka, I.: On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun. Partial Differ. Equ. 27, 1901–1951 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Conti, M., Marchini, E.M., Pata, V.: A well posedness result for nonlinear viscoelastic equations with memory. Nonlinear Anal. 94, 206–216 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Conti, M., Marchini, E.M., Pata, V.: Non classical diffusion with memory. Math. Methods Appl. Sci. 38, 948–958 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Conti, M., Marchini, E.M., Pata, V.: Global attractors for nonlinear viscoelastic equations with memory. Commun. Pure Appl. Anal. 15(5), 1893–1913 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    MathSciNet  MATH  Google Scholar 

  29. Dafermos, C.M.: Asymptotic behavior of solutions of evolution equations. Nonlinear evolution equations (Proc. Sympos., Univ. Wisconsin, Madison, Wis., (1977), pp. 103–123, Publ. Math. Res. Center Univ. Wisconsin, 40, Academic Press, New York–London, 1978

  30. Danese, V., Geredeli, P., Pata, V.: Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete Contin. Dyn. Syst. 35(7), 2881–2904 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Daoulatli, M., Lasiecka, I., Toundykov, D.: Uniform energy decay for a wave equation with partialy supported nonlinear boundary dissipation without growth restrictions. DCDS-S 2, 1 (2009)

    MATH  Google Scholar 

  32. Dehman, B., Lebeau, G., Zuazua, E.: Stabilization and control for the subcritical semilinear wave equation. Anna. Sci. Ec. Norm. Super. 36, 525–551 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Duistermaat, J.J., Hörmander, L.: Fourier integral operators. II. Acta Math. 128(3–4), 183–269 (1972)

    MathSciNet  MATH  Google Scholar 

  34. Duyckaerts, T., Zhang, X., Zuazua, E.: On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1–41 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Fabrizio, M., Giorgi, C., Pata, V.: A new approach to equations with memory. Arch. Ration. Mech. Anal. 198(1), 189–232 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Gérard, P.: Microlocal defect measures. Commun. Partial Differ. Equ. 16, 1761–1794 (1991)

    MathSciNet  MATH  Google Scholar 

  37. Gérard, P.: Oscillations and concentration effects in semilinear dispersive wave equations. J. Funct. Anal. 141(1), 60–98 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Giorgi, C., Marzocchi, A., Pata, V.: Asymptotic behavior of a semilinear problem in heat conduction with memory. NoDEA 5, 333–354 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Giorgi, C., Rivera, J.E.M., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260, 83–99 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Grasselli, M., Pata, V.: Uniform attractors of non autonomous systems with memory. In: Lorenzi, A., Ruf, B. (eds.) Evolution Equations, Semigroups and Functional Analysis, pp. 155–178. Birkhauser, Boston (2002)

    Google Scholar 

  41. Guesmia, A., Messaoudi, S.A.: A general decay result for a viscoelastic equation in the presence of past and finite history memories. Nonlinear Anal. 13, 476–485 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Guo, Y., Rammaha, M.A., Sakuntasathien, S., Titi, E., Toundykov, D.: Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping. J. Differ. Equ. 257(10), 3778–3812 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Hitrik, M.: Expansions and eigenfrequencies for damped wave equations. Journées équations aux Dérivées Partielles (Plestin-les-Grèves, 2001) 6, 10 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Hörmander, L.: The propagation of singularities for solutions of the Dirichlet problem. In Pseudodifferential operators and applications (Notre Dame, Ind., 1984), volume 43 of Proc. Sympos. Pure Math., pp. 157–165. Amer. Math. Soc., Providence, RI (1985)

  45. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1985)

    MATH  Google Scholar 

  46. Joly, R., Laurent, C.: Stabilization for the semilinear wave equation with geometric control. J. Anal. PDE 6(5), 1089–1119 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Cham (2008)

    MATH  Google Scholar 

  48. Koch, H., Tataru, D.: Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58, 217–284 (2005)

    MathSciNet  MATH  Google Scholar 

  49. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ. Integral Equ. 6, 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  50. Lasiecka, I., Messaoudi, S.A., Mustafa, M.I.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54(3), 031504 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Laurent, C.: On stabilization and control for the critical Klein–Gordon equation on a 3-D compact manifold. J. Funct. Anal. 260(5), 1304–1368 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Lebeau, G.: Equations des ondes amorties. Algebraic Geometric Methods in Maths. Physics, pp. 73–109 (1996)

  53. Lions, J.L.: Quelques Methódes de Resolution des Probléms aux limites Non Lineéires. (1969)

  54. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications. Vol. 1. (French) Travaux et Recherches Mathématiques, No. 17 Dunod, Paris 1968 xx+372 pp

  55. Liu, K., Liu, Z.: Exponential decay of energy of vibrating strings with local viscoelasticity. ZAMP 53, 265–280 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complutense 12(1), 251–283 (1999)

    MathSciNet  MATH  Google Scholar 

  57. Miller, L.: Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J. Control Optim. 41(5), 1554–1566 (2002)

    MathSciNet  MATH  Google Scholar 

  58. Moser, J.: A sharp form of an inequality by N. Trudinger. Ind. Univ. Math. J. 20, 1077–1092 (1979)

    MathSciNet  MATH  Google Scholar 

  59. Nakao, M.: Decay and global existence for nonlinear wave equations with localized dissipations in general exterior domains. New trends in the theory of hyperbolic equations, 213–299, Oper. Theory Adv. Appl., 159, Birkhäuser, Basel (2005)

  60. Nakao, M.: Energy decay for the wave equation with boundary and localized dissipations in exterior domains. Math. Nachr. 278(7–8), 771–783 (2005)

    MathSciNet  MATH  Google Scholar 

  61. Ning, Z.-H.: Asymptotic behavior of the nonlinear Schrödinger equation on exterior domain. arXiv:1905.09540 (2019)

  62. Pata, V.: Stability and exponential stability in linear viscoelasticity. Milan J. Math. 77, 333–360 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44. Springer, New York (1983)

    MATH  Google Scholar 

  64. Qin, T.: Asymptotic behavior of a class of abstract semilinear integrodifferential equations and applications. J. Math. Anal. Appl. 233(1), 130–147 (1999)

    MathSciNet  MATH  Google Scholar 

  65. Rauch, J., Taylor, M.: Decay of solutions to n on dissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975)

    MATH  Google Scholar 

  66. Rivera, J.E.M., Peres Salvatierra, A.: Asymptotic behaviour of the energy in partially viscoelastic materials. Quart. Appl. Math. 59, 557–578 (2001)

    MathSciNet  MATH  Google Scholar 

  67. Ruiz, A.: Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures. Appl. 71, 455–467 (1992)

    MathSciNet  MATH  Google Scholar 

  68. Simon, J.: Compact Sets in the space \(L^p(0, T; B)\). Ann. Math. Pura Appl. 146, 65–96 (1987)

    MATH  Google Scholar 

  69. Strauss, W.A.: On weak solutions of semilinear hyperbolic equations. Anais da Academis Brasileira de Ciências 71, 645–651 (1972)

    Google Scholar 

  70. Tataru, D.: The \(X_\theta ^s\) spaces and unique continuation for solutions to the semilinear wave equation. Commun. Partial Differ. Equ. 2, 841–887 (1996)

    MATH  Google Scholar 

  71. Toundykov, D.: Optimal decay rates for solutions of nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponents source terms under mixed boundary. Nonlinear Anal. T. M. A. 67(2), 512–544 (2007)

    MathSciNet  MATH  Google Scholar 

  72. Triggiani, R., Yao, P.F.: Carleman estimates with no lower-Order terms for general Riemannian wave equations. Global uniqueness and observability in one shot, phAppl. Math. and Optim 46 (Sept./ Dec. 2002) 331–375. Special issue dedicated to J. L, Lions

  73. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17(5), 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  74. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

  75. Yao, P.-F.: On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37(5), 1568–1599 (1999)

    MathSciNet  MATH  Google Scholar 

  76. Yao, P.-F.: Observability inequalities for shallow shells. SIAM J. Control Optim. 38(6), 1729–1756 (2000)

    MathSciNet  MATH  Google Scholar 

  77. Yao, P.-F.: Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Differ. Equ. 241(1), 62–93 (2007)

    MathSciNet  MATH  Google Scholar 

  78. Yao, P.-F.: Boundary controllability for the quasilinear wave equation. Appl. Math. Optim. 61(2), 191–233 (2010)

    MathSciNet  MATH  Google Scholar 

  79. Yao, P.-F.: Modeling and Control in Vibrational and Structural Dynamics. A Differential Geometric Approach, Chap-man & Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, (2011)

  80. Zhang, X.: Explicit observability estimates for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Cont. Optim. 3, 812–834 (2000)

    MATH  Google Scholar 

  81. Zuazua, E.: Exponential decay for the semilinear wave equation with locally distributed damping. Commun. Partial Differ. Equ. 15(2), 205–235 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Simion Antunes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. G. S. Antunes: Research of José Guilherme Simion Antunes is partially supported by the CAPES Grant 88882.449189/2019-01. M. M. Cavalcanti: Research of Marcelo M. Cavalcanti is partially supported by the CNPq Grant 300631/2003-0. V. N. D. Cavalcanti: Research of Valéria N. Domingos Cavalcanti is partially supported by the CNPq Grant 304895/2003-2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, J.G.S., Cavalcanti, M.M., Cavalcanti, V.N.D. et al. Exponential Stability for the 2D Wave Model with Localized Memory in a Past History Framework and Nonlinearity of Arbitrary Growth. J Geom Anal 33, 39 (2023). https://doi.org/10.1007/s12220-022-01085-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-01085-w

Keywords

Mathematics Subject Classification

Navigation