Skip to main content
Log in

Compactness of Dirac–Einstein Spin Manifolds and Horizontal Deformations

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the Hilbert–Einstein–Dirac functional, whose critical points are pairs, metrics-spinors, that satisfy a system coupling the Riemannian and the spinorial part. Under some assumptions, on the sign of the scalar curvature and the diameter, we prove a compactness result for this class of pairs, in dimension three and four. This can be seen as the equivalent of the study of compactness of sequences of Einstein manifolds as in references (Anderson in J Am Math Soc 2:455–490, 1989; Nakajima in J Fac Sci Univ Tokyo Sect IA Math 35:411–424, 1988). Indeed, we study the compactness of sequences of critical points of the Hilbert–Einstein–Dirac functional which is an extension of the Hilbert–Einstein functional having Einstein manifolds as critical points. Moreover we will study the second variation of the energy, characterizing the horizontal deformations for which the second variation vanishes. Finally we will exhibit some explicit examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann, B., Weiss, H., Witt, F.: A spinorial energy functional: critical points and gradient flow. Math. Ann. 365(3–4), 1559–1602 (2016)

    Article  MathSciNet  Google Scholar 

  2. Anderson, M.: Moduli spaces of Einstein metrics on 4-manifolds. Bull. Am. Math. Soc. (N.S.) 21(2), 275–279 (1989)

    Article  MathSciNet  Google Scholar 

  3. Anderson, M.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math. Soc. 2(3), 455–490 (1989)

    Article  MathSciNet  Google Scholar 

  4. Anderson, M.: Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102(2), 429–445 (1990)

    Article  MathSciNet  Google Scholar 

  5. Anderson, M.: The \(L^2\) structure of moduli spaces of Einstein metrics on 4-manifolds. Geom. Funct. Anal. 2(1), 29–89 (1992)

    Article  MathSciNet  Google Scholar 

  6. Bando, S., Kasue, A., Nakajima, H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97(2), 313–349 (1989)

    Article  MathSciNet  Google Scholar 

  7. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)

    Article  MathSciNet  Google Scholar 

  8. Belgun, F.A.: The Einstein–Dirac equation on Sasakian 3-manifolds. J. Geom. Phys. 37(3), 229–236 (2001)

    Article  MathSciNet  Google Scholar 

  9. Borrelli, W., Maalaoui, A.: Some properties of Dirac–Einstein bubbles. J. Geom. Anal. (2020). https://doi.org/10.48550/arXiv.2005.04787

    Article  MATH  Google Scholar 

  10. Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144, 581–599 (1992)

    Article  Google Scholar 

  11. Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)

    Article  MathSciNet  Google Scholar 

  12. Cheeger, J.: Structure theory and convergence in Riemannian geometry. Milan J. Math. 78(1), 221–264 (2010)

    Article  MathSciNet  Google Scholar 

  13. Croke, C.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. l’É. N.S. 4e Sér. Tome 13(4), 419–435 (1980)

    MathSciNet  MATH  Google Scholar 

  14. Dai, X., Wang, X., Wei, G.: On the stability of Riemannian manifold with parallel spinors. Invent. Math. 161(1), 151–176 (2005)

    Article  MathSciNet  Google Scholar 

  15. Finster, F., Smoller, J., Yau, S.T.: Particle-like solutions of the Einstein–Dirac equations. Phys. Rev. D Part. Fields Third Ser. 59, 104020 (1999)

    Article  Google Scholar 

  16. Guidi, C., Maalaoui, A., Martino, V.: Existence results for the conformal Dirac–Einstein system. Adv. Nonlinear Stud. 21(1), 107–117 (2021)

    Article  MathSciNet  Google Scholar 

  17. Güneysu, B., Pigola, S.: The Calderón–Zygmund inequality and Sobolev spaces on noncompact Riemannian manifolds. Adv. Math. 281, 353–393 (2015)

    Article  MathSciNet  Google Scholar 

  18. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  Google Scholar 

  19. Kapovitch, V., Lott, J.: On noncollapsed almost Ricci-flat 4-manifolds. Am. J. Math. 141(3), 737–755 (2019)

    Article  MathSciNet  Google Scholar 

  20. Kim, E.C., Friedrich, T.: The Einstein–Dirac equation on Riemannian spin manifolds. J. Geom. Phys. 33(1–2), 128–172 (2000)

    Article  MathSciNet  Google Scholar 

  21. Kröncke, K.: On infinitesimal Einstein deformations. Differ. Geom. Appl. 38, 41–57 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kronheimer, P., Nakajima, H.: Yang–Mills instantons on ALE gravitational instantons. Math. Ann. 288(2), 263–307 (1990)

    Article  MathSciNet  Google Scholar 

  23. Lott, J.: \(\check{a}\)-genus and collapsing. J. Geom. Anal. 10(3), 529–543 (2000)

  24. Maalaoui, A.: Rabinowitz–Floer homology for superquadratic Dirac equations on compact spin manifolds. J. Fixed Point Theory Appl. 13(1), 175–199 (2013)

    Article  MathSciNet  Google Scholar 

  25. Maalaoui, A., Martino, V.: The Rabinowitz–Floer homology for a class of semilinear problems and applications. J. Funct. Anal. 269, 4006–4037 (2015)

    Article  MathSciNet  Google Scholar 

  26. Maalaoui, A., Martino, V.: Homological approach to problems with jumping non-linearity. Nonlinear Anal. 144, 165–181 (2016)

    Article  MathSciNet  Google Scholar 

  27. Maalaoui, A., Martino, V.: Characterization of the Palais–Smale sequences for the conformal Dirac–Einstein problem and applications. J. Differ. Equ. 266(5), 2493–2541 (2019)

    Article  MathSciNet  Google Scholar 

  28. Nakajima, H.: Hausdorff convergence of Einstein 4-manifolds. J. Fac. Sci. Univ. Tokyo Sect. IA MAth. 35(2), 411–424 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Peters, S.: Cheeger’s finiteness theorem for diffeomorphism classes of Riem. MFS. J. Reine Ang. Math. 349, 77–82 (1984)

    MATH  Google Scholar 

  30. Roos, S.: Dirac operators with \(W^{1,\infty }\)-potential on collapsing sequences losing one dimension in the limit. Manus. Math. 157(3–4), 387–410 (2018)

  31. Roos, S.: The Dirac operator under collapse to a smooth limit space. Ann. Global Anal. Geom. 57(1), 121–151 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wang, M.Y.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40(3), 815–844 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors want to extend their thanks and gratitude to the referee for the comments and suggestions that led to this improved version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maalaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maalaoui, A., Martino, V. Compactness of Dirac–Einstein Spin Manifolds and Horizontal Deformations. J Geom Anal 32, 201 (2022). https://doi.org/10.1007/s12220-022-00941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00941-z

Keywords

Mathematics Subject Classification

Navigation