Skip to main content
Log in

Griffiths Extremality, Interpolation of Norms, and Kähler Quantization

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Following Kobayashi, we consider Griffiths negative complex Finsler bundles, naturally leading us to introduce Griffiths extremal Finsler metrics. As we point out, this notion is closely related to the theory of interpolation of norms, and is characterized by an equation of complex Monge–Ampère type, whose corresponding Dirichlet problem we solve. As applications, we prove that Griffiths extremal Finsler metrics quantize solutions to a natural PDE in Kähler geometry, related to the construction of flat maps for the Mabuchi metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37(1), 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berman, R.: From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit. Math. Z. 291(1–2), 365–394 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, R., Demailly, J.P.: Regularity of plurisubharmonic upper envelopes in big cohomology classes. Perspectives in analysis, geometry and topology, Progr. Math. 296, Birkhäuser/Springer, New York, pp. 39–66 (2012) arxiv:0905.1246

  4. Berman, R., Keller, J.: About Bergman Geodesics and Homogenous Complex Monge–Ampère Equations. Lecture Notes in Mathematics, vol. 2038, pp. 283–302. Springer, Berlin (2012)

    Google Scholar 

  5. Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. (2) 169(2), 531–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berndtsson, B.: Probability measures related to geodesics in the space of Kähler metrics. arXiv:0907.1806

  7. Berndtsson, B., Cordero-Erausquin, D., Klartag, B., Rubinstein, Y.A.: Complex interpolation of \({\mathbb{R}}\)-norms, duality and foliations. arXiv:1607.06306

  8. Blocki, Z.: A gradient estimate in the Calabi–Yau theorem. Math. Ann. 344, 317–327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blocki, Z.: The complex Monge–Ampère equation in Kähler geometry, course given at CIME Summer School in Pluripotential Theory, Cetraro, Italy, July 2011. In: Bracci, F., Fornaess, J.E. (eds.) Lecture Notes in Mathematics, vol. 2075, pp. 95–142. Springer, New York (2013)

    MATH  Google Scholar 

  10. Blocki, Z., Kolodziej, S.: On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. 135(7), 2089–2093 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boucksom, S.: Monge–Ampère equations on complex manifolds with boundary. In: Guedj, V. (ed.) Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics. Lecture Notes in Mathematics, vol. 2038. Springer, Heidelberg (2012)

    Google Scholar 

  12. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  13. Catlin, D.: The Bergman kernel and a theorem of Tian, in: Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser, pp. 1–23 (1999)

  14. Chen, X.X.: The space of Kähler metrics. J. Differ. Geom. 56(2), 189–234 (2000)

    Article  MATH  Google Scholar 

  15. Chen, X.X., Sun, S.: Space of Kähler metrics (V)- Kähler quantization. In: Dai, X.-Z., et al. (eds.) Metric and Differential Geometry, pp. 19–42. Springer, Berlin (2012)

    Chapter  Google Scholar 

  16. Coifman, R.R., Semmes, S.: Interpolation of Banach spaces, Perron processes, and Yang–Mills. Am. J. Math. 115(2), 243–278 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coifman, R.R., Cwikel, M., Rochberg, R., Sagher, Y., Weiss, G.: A theory of complex interpolation for families of Banach spaces. Adv. Math. 43, 203–229 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Darvas, T., Lu, C.H., Rubinstein, Y.A.: Quantization in geometric pluripotential theory, arXiv:1806.03800

  19. Darvas, T.: Geometric pluripotential theory on Kähler manifolds. arXiv:1902.01982

  20. Darvas, T.: The Mabuchi completion of the space of Kähler potentials. Am. J. Math. 139(5), 1275–1313 (2017)

    Article  MATH  Google Scholar 

  21. Darvas, T., Rubinstein, Y.A.: Kiselman’s principle, the Dirichlet problem for the Monge–Ampère equation, and rooftop obstacle problems. J. Math. Soc. Jpn. 68(2), 773–796 (2016)

    Article  MATH  Google Scholar 

  22. Demailly, J.P.: Complex Analytic and Differential Geometry, textbook available at the website of the author

  23. Demailly, J.P.: Regularization of closed positive currents of type (1,1) by the flow of a Chern connection. Contributions to complex analysis and analytic geometry. Aspects Math., E26, Vieweg, Braunschweig, pp. 105–126 (1994)

  24. Donaldson, S.K.: Boundary value problems for Yang-Mills fields. J. Geom. Phys. 8(1–4), 89–122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In Northern California Symplectic Geometry Seminar, vol. 196 of Amer. Math. Soc. Transl. Ser. 2, 13–33. Amer. Math. Soc., Providence, RI (1999)

  26. Donaldson, S.K.: Scalar curvature and projective embeddings, I. J. Differ. Geom. 59, 479–522 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Feng, H., Liu, K., Wan, X.: Complex Finsler vector bundles with positive Kobayashi curvature. arXiv:1811.08617

  28. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  29. Griffiths, P.A.: Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis, papers in honor of K. Kodaira, Princeton Univ. Press, Princeton, pp. 181–251 (1969)

  30. Guedj, V., Zeriahi, A.: Degenerate complex Monge–Ampère equations. EMS Tracts in Mathematics, 26. European Mathematical Society (EMS), Zürich. xxiv+472 pp (2017)

  31. Gunning, R.C.: Introduction to holomorphic functions of several variables. Vol. I. Function theory. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1990)

  32. Hörmander, L.: An introduction to complex analysis in several variables. North-Holland Mathematical Library, 7, 3rd edn. North–Holland Publishing Co., Amsterdam (1990)

    MATH  Google Scholar 

  33. Kobayashi, S.: Negative vector bundles and complex Finsler structures. Nagoya Math. J. 57, 1–8 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kobayashi, S.: Complex Finsler vector bundles. Finsler geometry. Contemp. Math., vol. 196. Am. Math. Soc. pp. 145–153 (1996)

  35. Kobayashi, S.: Differential Geometry of Complex Vector Bundles, vol. 793. Princeton University Press, Princeton (2014)

    Google Scholar 

  36. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch. Am. J. Math. 122, 235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds I. Osaka J. Math. 24, 227–252 (1987)

    MathSciNet  MATH  Google Scholar 

  38. Mourougane, C., Takayama, S.: Hodge metrics and positivity of direct images. J. Reine Angew. Math. 606, 167 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Ohsawa, T., Takegoshi, K.: On the extension of \(L^{2}\) holomorphic functions. Math. Z. 195, 197–204 (1987)

    MathSciNet  MATH  Google Scholar 

  40. Phong, D.H., Sturm, J.: The Monge–Ampère operator and geodesics in the space of Kähler potentials. Invent. Math. 166, 125–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rochberg, R.: Interpolation of Banach spaces and negatively curved vector bundles. Pacific J. Math. 110(2), 355–376 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rubinstein, Y.A., Zelditch, S.: Bergman approximations of harmonic maps into the space of Kähler metrics on toric varieties. J. Symplectic Geom. 8(3), 239–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Semmes, S.: Complex Monge–Ampère and symplectic manifolds. Am. J. Math. 114, 495–550 (1992)

    Article  MATH  Google Scholar 

  44. Slodkowski, Z.: Complex interpolation of normed and quasinormed spaces in several dimensions. I. Trans. Am. Math. Soc. 308, 685–711 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  45. Slodkowski, Z.: Complex interpolation of normed and quasinormed spaces in several dimensions. II. Properties of harmonic interpolation. Trans. Am. Math. Soc. 317, 255–285 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  46. Slodkowski, Z.: Complex interpolation for normed and quasi-normed spaces in several dimensions. III. Regularity results for harmonic interpolation. Trans. Am. Math. Soc. 321, 305–332 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Slodkowski, Z.: Polynomial hulls with convex fibers and complex geodesics. J. Funct. Anal. 94(1), 156–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Song, J., Zelditch, S.: Bergman metrics and geodesics in the space of Kähler metrics on toric varieties. Anal. PDE 3, 295–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tian, G.: Kähler metrics on algebraic manifolds, Ph.D. Thesis, Harvard University (1988)

  50. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32, 99–130 (1990)

    Article  MATH  Google Scholar 

  51. Wong, P.-M.: A survey of complex Finsler geometry. Finsler geometry, Sapporo 2005-in memory of Makoto Matsumoto, 375–433, Adv. Stud. Pure Math., 48, Math. Soc. Japan, Tokyo (2007)

  52. Yau, S.-T.: Nonlinear analysis in geometry. Enseign. Math. 33, 109–158 (1987)

    MathSciNet  MATH  Google Scholar 

  53. Zelditch, S.: Szegő kernel and a theorem of Tian. Int. Math. Res. Notices 6, 317–331 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank László Lempert for numerous suggestions improving the presentation of the paper. We thank the referees for careful reading and helpful comments. The first named author has been partially supported by NSF Grants DMS-1610202 and DMS-1846942(CAREER). The second named author has been partially supported by NSF Grant DMS-1764167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Darvas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvas, T., Wu, KR. Griffiths Extremality, Interpolation of Norms, and Kähler Quantization. J Geom Anal 32, 203 (2022). https://doi.org/10.1007/s12220-022-00940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00940-0

Keywords

Mathematics Subject Classification

Navigation