Skip to main content
Log in

On a Class of Quasi-Einstein Finsler Metrics

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notion of quasi-Einstein Finsler metric, which is a natural generalization of quasi-Einstein metric in Riemannian geometry. This is also a generalization of Einstein Finsler metrics. Then we study and characterize quasi-Einstein square metrics. Furthermore, we determine quasi-Einstein square metrics. Moreover, we prove that locally projectively flat quasi-Einstein square metrics on a manifold of dimension \(n\ge 3\) must be locally Minkowskian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry, GTM 200. Springer, New York (2000)

    Book  Google Scholar 

  2. Berwald, L.: Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die Geraden die kürzesten sind. Math. Z. 30, 449–469 (1929)

    Article  MathSciNet  Google Scholar 

  3. Case, J., Shu, Y., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29, 93–100 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cheng, X., Tian, Y.: Ricci-flat Douglas \((\alpha,\beta )\)-metrics. Publ. Math. Debrecen. 30(1), 20–32 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Chern, S.S., Shen, Z.: Riemann-Finsler Geometry, Nankai Tracts in Mathematics, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)

    Book  Google Scholar 

  6. Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–261 (1988)

    Article  MathSciNet  Google Scholar 

  7. Li, B., Shen, Z.: On a class of projectively flat Finsler metrics with constant flag curvature. Int. J. Math. 18, 749–760 (2007)

    Article  MathSciNet  Google Scholar 

  8. Lott, J., Villani, C.: Ricci curvatue for metric-measure spaces via optional transport. Ann. Math. 169(3), 903–991 (2009)

    Article  MathSciNet  Google Scholar 

  9. Ohta, S.-I.: Finsler interpotion inequalities. Calc. Var. Partial Differ. Equ. 36(2), 211–249 (2009)

    Article  Google Scholar 

  10. Ohta, S.-I., Sturm, K.-T.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62, 1386–1433 (2009)

    Article  MathSciNet  Google Scholar 

  11. Petersen, P.: Warped Product, http://www.math.ucla.edu/petersen/warpedproducts.pdf

  12. Sevim, E.S., Shen, Z., Zhao, L.: On a class of Ricci-flat Douglas metrics. Int. J. Math. 23, 1250046 (2012)

    Article  MathSciNet  Google Scholar 

  13. Shen, Z., Yang, G.: On Square metrics of scalar flag curvature. Isreal J. Math. 224(1), 159–188 (2018)

    Article  MathSciNet  Google Scholar 

  14. Shen, Z., Yildirim, G.C.: On a class of projectively flat metrics with constant flag curvature. Can. J. Math. 60(2), 443–456 (2008)

    Article  MathSciNet  Google Scholar 

  15. Shen, Z., Yu, C.: On Einstein square metrics. Publ. Math. Debrecen. 85(3–4), 413–424 (2014)

    Article  MathSciNet  Google Scholar 

  16. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  17. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  Google Scholar 

  18. Yang, G.: On a class of two-dimensional projectively flat Finsler metrics with constant flag curvature. Acta Math. Sin. 29(5), 959–974 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zhou, L.: A local classification of a class of \((\alpha ,\beta )\)-metrics with constant flag curvature. Differ. Geom. Appl. 28, 170–193 (2010)

    Article  MathSciNet  Google Scholar 

  20. Zhu, H.: On general \((\alpha ,\beta )\)-metrics with isotropic \(S\)-curvature. J. Math. Anal. Appl. 464, 1127–1142 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in the National Natural Science Foundation of China (Grant No. 11901170)

A Appendix

A Appendix

Proposition A.1

[19] For an \((\alpha ,\beta )\)-metric \(F=\alpha \phi (s)\), \(s=\frac{\beta }{\alpha }\), the Ricci curvature of F is related to the Ricci curvature \({}^{\alpha }Ric\) of \(\alpha \) by

$$\begin{aligned} Ric={}^{\alpha }Ric+T^{m}{}_{m}, \end{aligned}$$
(A.1)

where

$$\begin{aligned} T^{m}{}_{m}= & {} [(n-1)c_{1}+c_{2}]\frac{r_{00}^{2}}{\alpha ^{2}}+[(n-1)c_{3}+c_{4}]\frac{r_{00}s_{0}}{\alpha }+[(n-1)c_{5}+c_{6}]\frac{r_{00}r_{0}}{\alpha }\\&+[(n-1)c_{7}+c_{8}]\frac{r_{00|0}}{\alpha }+[(n-1)c_{9}+c_{10}]s_{0}^{2}+(r_{00}r-r_{0}^{2})c_{11}\\&+[(n-1)c_{12}+c_{13}]r_{0}s_{0}\\&+(r^{i}{}_{i}r_{00}+r_{00|b}-b^{i}r_{i0|0}-r_{0i}r^{i}{}_{0})c_{14}+[(n-1)c_{15}+c_{16}]r_{0i}s^{i}{}_{0}\\&+[(n-1)c_{17}+c_{18}]s_{0|0}\\&+c_{19}s_{0i}s^{i}{}_{0}+\alpha c_{20}r s_{0}+[(n-1)c_{21}+c_{22}]\alpha s_{i}s^{i}{}_{0}+\alpha (2r_{i}s^{i}{}_{0}+b^{i}s_{i|0}-2s_{0|b}\\&-2s_{0}r^{i}_{i}+3s_{i}r^{i}{}_{0}) c_{23}\\&+2\alpha Q s^{i}{}_{0|i}-4\alpha ^{2}Q^{2}\Psi s_{i}s^{i}-\alpha ^{2}Q^{2}s^{i}{}_{j}s^{j}{}_{i}, \end{aligned}$$

where

$$\begin{aligned} c_{1}= & {} 2\Psi \Theta _{s}(B-s^{2})-2s\Psi \Theta +\Theta ^{2}-\Theta _{s},\\ c_{2}= & {} (2\Psi \Psi _{ss}-\Psi _{s}^{2})(B-s^{2})^{2}-(6s\Psi \Psi _{s}+\Psi _{ss})(B-s^{2})+2s\Psi _{s},\\ c_{3}= & {} -4\Psi (2Q\Theta _{s}+Q_{s}\Theta )(B-s^{2})+2(Q_{s}\Theta +2Q\Theta _{s})+4Q\Theta (s\Psi -\Theta )-2\Theta _{B},\\ c_{4}= & {} 4[-\Psi (2Q\Psi _{ss}+Q_{s}\Psi _{s}+Q_{ss}\Psi )+Q\Psi _{s}^{2}](B-s^{2})^{2}\\&+2[-2\Psi ^{2}(Q-sQ_{s})+2Q_{ss}\Psi +Q_{s}\Psi _{s}+2Q\Psi _{ss}-\Psi _{sB}\\&+10sQ\Psi \Psi _{s}](B-s^{2})+2\Psi (Q-sQ_{s})-4\Psi _{s}-Q_{ss}-10sQ\Psi _{s},\\ c_{5}= & {} 2(2\Psi \Theta -\Theta _{B}),\\ c_{6}= & {} 2(2\Psi \Psi _{s}-\Psi _{sB})(B-s^{2})-2\Psi _{s},\\ c_{7}= & {} -\Theta ,\\ c_{8}= & {} -\Psi _{s}(B-s^{2}),\\ c_{9}= & {} 8Q\Psi (Q\Theta _{s}+\Theta Q_{s})(B-s^{2})+4Q^{2}(\Theta ^{2}-\Theta _{s})-4Q(\Theta Q_{s}-\Theta _{B}),\\ c_{10}= & {} 4[\Psi ^{2}(2QQ_{ss}-Q_{s}^{2})+2Q\Psi (Q\Psi _{ss}+Q_{s}\Psi _{s})-Q^{2}\Psi _{s}^{2}](B-s^{2})^{2}\\&+4[-4sQ\Psi (\Psi Q_{s}+Q\Psi _{s})-\Psi (2QQ_{ss}-Q_{s}^{2})-Q(Q\Psi _{ss}+Q_{s}\Psi _{s})+Q\Psi _{Bs}\\&+2\Psi ^{2}Q^{2}+Q_{s}\Psi _{B}](B-s^{2})-4s^{2}Q^{2}\Psi ^{2}+4(2+3sQ)(\Psi Q_{s}+Q\Psi _{s})\\&-8Q^{2}\Psi +2QQ_{ss}-Q_{s}^{2}+4sQ\Psi _{B},\\ c_{11}= & {} 4(\Psi ^{2}+\Psi _{B}),\\ c_{12}= & {} 4Q(-2\Theta \Psi +\Theta _{B}),\\ c_{13}= & {} 4[2\Psi (Q_{s}\Psi -Q\Psi _{s})+Q\Psi _{Bs}+Q_{s}\Psi _{B}](B-s^{2})+8sQ\Psi ^{2}+4Q\Psi _{s}-4(1-sQ)\Psi _{B},\\ c_{14}= & {} 2\Psi ,\\ c_{15}= & {} 4Q\Theta ,\\ c_{16}= & {} 4(B-s^{2})(Q \Psi _{s}-Q_{s}\Psi )+2Q_{s}-2(1+2sQ)\Psi ,\\ c_{17}= & {} 2Q\Theta ,\\ c_{18}= & {} 2(Q\Psi _{s}+Q_{s}\Psi )(b^{2}-s^{2})-Q_{s}+2sQ\Psi ,\\ c_{19}= & {} -2Q^{2}+2(1+sQ)Q_{s},\\ c_{20}= & {} -8Q(\Psi ^{2}+\Psi _{B}),\\ c_{21}= & {} -4Q^{2}\Theta ,\\ c_{22}= & {} 2[-2Q^{2}\Psi _{s}(B-s^{2})+Q\Psi ],\\ c_{23}= & {} 2Q\Psi . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H. On a Class of Quasi-Einstein Finsler Metrics. J Geom Anal 32, 195 (2022). https://doi.org/10.1007/s12220-022-00936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00936-w

Keywords

Mathematics Subject Classification

Navigation