Skip to main content
Log in

Affine Invariant Maps for Log-Concave Functions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Affine invariant points and maps for sets were introduced by Grünbaum to study the symmetry structure of convex sets. We extend these notions to a functional setting. The role of symmetry of the set is now taken by evenness of the function. We show that among the examples for affine invariant points are the classical center of gravity of a log-concave function and its Santaló point. We also show that the recently introduced floating functions and the John- and Löwner functions are examples of affine invariant maps. Their centers provide new examples of affine invariant points for log-concave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böröczky, K., Jr.: Approximation of general smooth convex bodies. Adv. Math. 153, 325–341 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Böröczky, K., Jr., Reitzner, M.: Approximation of smooth convex bodies by random circumscribed polytopes. Ann. Appl. Probab. 14, 239–273 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Reitzner, M.: Random points on the boundary of smooth convex bodies. Trans. Am. Math. Soc. 354, 2243–2278 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Schütt, C., Werner, E.M.: Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body. Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1807, pp. 241–422. Springer, Berlin (2003)

    MATH  Google Scholar 

  5. Nagy, S., Schütt, C., Werner, E.M.: Data depth and floating body. Stat. Surv. 13, 52–118 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Caglar, U., Werner, E.: Divergence for \(s\)-concave and log concave functions. Adv. Math. 257, 219–247 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Lutwak, E., Yang, D., Zhang, G.: The Cramer–Rao inequality for star bodies. Duke Math. J. 112, 59–81 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Lutwak, E., Yang, D., Zhang, G.: Moment–entropy inequalities. Ann. Probab. 32, 757–774 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Lutwak, E., Yang, D., Zhang, G.: Cramer–Rao and moment–entropy inequalities for Rényi entropy and generalized Fisher information. IEEE Trans. Inf. Theory 51, 473–478 (2005)

    MATH  Google Scholar 

  10. Paouris, G., Werner, E.M.: Relative entropy of cone measures and \(L_p\) centroid bodies. Proc. Lond. Math. Soc. 104, 253–286 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Werner, E.M.: Rényi divergence and \(L_p\)-affine surface area for convex bodies. Adv. Math. 230, 1040–1059 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Werner, E.M.: f-Divergence for convex bodies. Proceedings of the “Asymptotic Geometric Analysis” workshop, Fields Institute, Toronto (2012)

  13. Aubrun, G., Szarek, S.J., Werner, E.M.: Nonadditivity of Rényi entropy and Dvoretzky’s theorem. J. Math. Phys. 51, 022102 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Aubrun, G., Szarek, S.J., Werner, E.M.: Hastings’s additivity counterexample via Dvoretzky’s Theorem. Commun. Math. Phys. 305, 85–97 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Aubrun, G., Szarek, S., Ye, D.: Entanglement thresholds for random induced states. Commun. Pure Appl. Math. 67, 129–171 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Lutwak, E.: The Brunn–Minkowski–Firey theory II: Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Huang, H., Slomka, B., Werner, E.M.: Ulam floating bodies. J. Lond. Math. Soc. 100, 425–446 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Kolesnikov, A., Milman, E.: Local \(L^p\)-Brunn–Minkowski inequalities for \(p<1\), to appear in Memoirs of the AMS

  19. Ludwig, M., Reitzner, M.: A characterization of affine surface area. Adv. Math. 147, 138–172 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Meyer, M., Werner, E.M.: On the p-affine surface area. Adv. Math. 152, 288–313 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Schütt, C., Werner, E.M.: Surface bodies and \(p\)-affine surface area. Adv. Math. 187, 98–145 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Stancu, A.: The discrete planar \(L_0\)-Minkowski problem. Adv. Math. 167, 160–174 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Werner, E.M., Ye, D.: New \(L_p\)-affine isoperimetric inequalities. Adv. Math. 218, 762–780 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Gardner, R.J., Hug, D., Weil, W., Ye, Deping: The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl. 430(2), 810–829 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Xing, S., Ye, D.: On the general dual Orlicz–Minkowski problem. Indiana Univ. Math. J. (2020). https://doi.org/10.1155/2020/3067985

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, B., Xing, S., Ye, D.: The dual Orlicz–Minkowski problem. J. Geom. Anal. 28, 3829 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Haberl, C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. 14, 565–1597 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Ludwig, M.: Minkowski areas and valuations. J. Differ. Geom. 86, 133–161 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Ludwig, M., Reitzner, M.: A classification of \({\rm SL}(n)\) invariant valuations. Ann. Math. 172, 1219–1267 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Schuster, F.: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1–30 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Schuster, F., Weberndorfer, M.: Minkowski valuations and generalized valuations. J. Eur. Math. Soc. 20, 1851–1884 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Koldobsky, A.: Fourier analysis in convex geometry, Mathematical Surveys and Monographs, 116. American Mathematical Society, Providence, RI (2014)

  33. Klartag, B., Werner, E.M.: Some open problems in Asymptotic Geometric Analysis, June/July 2018 Notices of the AMS (2018)

  34. Bourgain, J.: On the distribution of polynomials on high-dimensional convex sets, Israel Seminar on GAFA, Lindenstrauss, Milman (Eds.), Springer Lecture Notes, vol. 1469, pp. 127–137 (1991)

  35. Klartag, B.: On convex perturbations with a bounded isotropic constant. Geom. and Funct. Anal. 16(6), 1274–1290 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Chen, Y.: An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture. Geom. Funct. Anal. GAFA (2021). https://doi.org/10.1007/s00039-021-00558-4

    Article  MATH  Google Scholar 

  37. Ball, K.: Volumes of Sections of Cubes and Related Problems. GAFGA Lecture Notes in Mathematics, vol. 1376, pp. 251–260. Springer, Berlin (1989)

    MATH  Google Scholar 

  38. Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134, 335–361 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44, 351–359 (1991)

    MathSciNet  MATH  Google Scholar 

  40. Szarek, S.J.: On Kashin’s almost Euclidean orthogonal decomposition of \(l^{1}_{n}\). Bull. Acad. Pol. Sci. 26, 691–694 (1978)

    MATH  Google Scholar 

  41. Szarek, S.J., Tomczak-Jaegermann, N.: On nearly Euclidean decomposition for some classes of Banach spaces. Compos. Math. 40, 367–385 (1980)

    MathSciNet  MATH  Google Scholar 

  42. Bourgain, J., Milman, V.D.: New volume ratio properties for convex symmetric bodies in \({{{\mathbb{R}}}}^n\). Invent. Math. 88, 319–340 (1987)

    MathSciNet  MATH  Google Scholar 

  43. Giladi, O., Prochno, J., Schütt, C., Tomczak-Jaegermann, N., Werner, E.M.: On the geometry of projective tensor products. J. Funct. Anal. 273, 471–495 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Schütt, C.: On the volume of unit balls in Banach spaces. Compos. Math. 47, 393–407 (1982)

    MathSciNet  Google Scholar 

  45. Szarek, S.J., Werner, E.M., Zyczkowski, K.: How often is a random quantum state \(k\)-entangled? J. Phys. A 40, 44 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Fradelizi, M., Hubard, A., Meyer, M., Roldan-Pensado, E., Zvavitch, A.: Equipartitions and Mahler volumes of symmetric convex bodies. arXiv:1904.10765v3

  47. Iriyeh, H., Shibata, M.: Symmetric Mahler’s conjecture for the volume product in the three dimensional case. arXiv:1706.01749 (2019)

  48. Nazarov, F.: The Hörmander proof of the Bourgain–Milman theorem, geometric aspects of functional analysis. Lect. Notes Math. 2050, 335–343 (2012)

    MATH  Google Scholar 

  49. Nazarov, F., Petrov, F., Ryabogin, D., Zvavitch, A.: A remark on the Mahler conjecture: local minimality of the unit cube. Duke Math. J. 154, 419–430 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Reisner, S., Schütt, C., Werner, E.M.: Mahler’s conjecture and curvature. International Mathematics Research Notices. IMRN, 2012, 1–16 (2012)

  51. Grünbaum, B.: Measures of symmetry for convex sets. Proc. Sympos. Pure Math. 7, 233–270 (1963)

    MathSciNet  MATH  Google Scholar 

  52. Meyer, M., Schütt, C., Werner, E.M.: Affine invariant points. Isr. J. Math. 208, 163–192 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Meyer, M., Schütt, C., Werner, E.M.: Dual affine invariant points. Indiana Univ. Math. U. 64, 735–768 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Mordhorst, O.: New results on affine invariant points. Isr. J. Math. 219, 529–548 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)

    MATH  Google Scholar 

  56. Pivoravov, P., Rebollo Bueno, J.: A stochastic Prekopa–Leindler inequality for log-concave functions. Commun. Contemp. Math. 23, 2050019 (2021)

    MathSciNet  MATH  Google Scholar 

  57. Pisier, G.: The volume of convex bodies and Banach space geometry. In: Cambridge Tracts in Mathematics, vol. 94. Cambridge University Press, Cambridge (1989)

  58. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  59. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39, 355–405 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Artstein-Avidan, S., Klartag, B., Milman, V.: The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51, 33–48 (2004)

    MathSciNet  MATH  Google Scholar 

  61. Ball, K.: Logarithmically concave functions and sections of convex sets in \({{{\mathbb{R}}}}^n\). Stud. Math. 88, 69–84 (1988)

    MATH  Google Scholar 

  62. Fradelizi, M., Meyer, M.: Some functional forms of Blaschke–Santaló inequality. Math. Z. 256, 379–395 (2007)

    MathSciNet  MATH  Google Scholar 

  63. Lehec, J.: A direct proof of the functional Santaló inequality. C. R. Math. Acad. Sci. Paris 347, 55–58 (2009)

    MathSciNet  MATH  Google Scholar 

  64. Fradelizi, M., Meyer, M.: Some functional inverse Santaló inequalities. Adv. Math. 218, 1430–1452 (2008)

    MathSciNet  MATH  Google Scholar 

  65. Artstein-Avidan, S., Klartag, B., Schütt, C., Werner, E.M.: Functional affine- isoperimetry and an inverse logarithmic Sobolev inequality. J. Funct. Anal. 262, 4181–4204 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Caglar, U., Fradelizi, M., Guédon, O., Lehec, J., Schütt, C., Werner, E.M.: Functional versions of \(Lp\)-affine surface area and entropy inequalities. Int. Math. Res. Not. IMRN 4, 1223–1250 (2016)

    MATH  Google Scholar 

  67. Caglar, U., Werner, E.M.: Mixed \(f\)-divergence and inequalities for log concave functions. Proc. Lond. Math. Soc. 210, 271–290 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Paouris, G., Pivoravov, P., Valettas, P.: On a quantitative reversal of Alexandrov’s inequality. Trans. Am. Math. Soc. 371, 3309–3324 (2019)

    MathSciNet  MATH  Google Scholar 

  69. Li, B., Schütt, C., Werner, E.M.: The floating function. Isr. J. Math. 231, 181–210 (2019)

    MathSciNet  MATH  Google Scholar 

  70. Alonso-Gutiérrez, D., Merino, B.G., Jiménez, C.H., Villa, R.: John’s ellipsoid and the integral ratio of a log-concave function. J. Geometr. Anal. 28, 1182–1201 (2018)

    MathSciNet  MATH  Google Scholar 

  71. Ivanov, G., Nazódi, M.: Functional John Ellipsoids. arXiv:2006.09934 (2020)

  72. Alonso-Gutiérrez, D., Merino, B.G., Villa, R.: Best approximation of functions by log-polynomials. J. Funct. Anal. 282, 109344–9 (2022)

    MathSciNet  MATH  Google Scholar 

  73. Li, B., Schütt, C., Werner, E.M.: The Löwner function of a log-concave function. J. Geometr. Anal. 31, 423–456 (2021)

    MATH  Google Scholar 

  74. Colesanti, A., Ludwig, M., Mussnig, F.: Minkowski valuations on convex functions. Calc. Var. Partial Differ. Equ. 56, 56–162 (2017)

    MathSciNet  MATH  Google Scholar 

  75. Colesanti, A., Ludwig, M., Mussnig, F.: Valuations on convex functions. Int. Math. Res. Not. IMRN 2019, 2384–2410 (2019)

    MathSciNet  MATH  Google Scholar 

  76. Mussnig, F.: Valuations on log-concave functions, preprint. arXiv:1707.06428 (2017)

  77. Alonso-Gutiérrez, D., Merino, B.G., Jiménez, C.H., Villa, R.: Rogers–Shephard inequality for log-concave functions. J. Funct. Anal. 271, 3269–3299 (2016)

    MathSciNet  MATH  Google Scholar 

  78. Caglar, U., Ye, D.: Affine isoperimetric inequalities in the functional Orlicz–Brunn–Minkowski theory. Adv. Appl. Math. 81, 78–114 (2016)

    MathSciNet  MATH  Google Scholar 

  79. Colesanti, A.: Functional inequalities related to the Rogers–Shephard inequality. Mathematica 53, 81–101 (2006)

    MathSciNet  MATH  Google Scholar 

  80. Colesanti, A., Fragalá, I.: The first variation of the total mass of log-concave functions and related inequalities. Adv. Math. 244, 708–749 (2013)

    MathSciNet  MATH  Google Scholar 

  81. Koldobsky, A., Zvavitch, A.: An isomorphic version of the Busemann–Petty problem for arbitrary measures. Geometr. Ded. 174, 261–277 (2015)

    MathSciNet  MATH  Google Scholar 

  82. Milman, E.: Reverse Hólder inequalities for log-Lipschitz functions, to appear in special issue of Pure Appl. Funct. Anal. dedicated to Louis Nirenberg

  83. Rotem, L.: On the mean width of log-concave functions. In: Klartag, B., Mendelson, S., Milman, V. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 2050. Springer, Berlin (2012)

    Google Scholar 

  84. Rotem, L.: Surface area measures of log-concave functions. arXiv:2006.16933 (2020)

  85. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series 28, Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  86. Klartag, B., Milman, V.D.: Geometry of log-concave functions and measures. Geom. Ded. 1(12), 169–182 (2005)

    MathSciNet  MATH  Google Scholar 

  87. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, A Wiley-Interscience Publication, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  88. Bárány, I., Larman, D.G.: Convex bodies, economic cap coverings, random polytopes. Mathematika 35, 274–291 (1988)

    MathSciNet  MATH  Google Scholar 

  89. Schütt, C., Werner, E.M.: The convex floating body. Math. Scand. 66, 275–290 (1990)

    MathSciNet  MATH  Google Scholar 

  90. Blaschke, W.: Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie. Springer, Berlin (1923)

    MATH  Google Scholar 

  91. Besau, F., Werner, E.M.: The spherical convex floating body. Adv. Math. 301, 867–901 (2016)

    MathSciNet  MATH  Google Scholar 

  92. Besau, F., Werner, E.M.: The floating body in real space forms. J. Differ. Geom. 110(2), 187–220 (2018)

    MathSciNet  MATH  Google Scholar 

  93. Schütt, C., Werner, E.M.: Homothetic floating bodies. Geom. Dedicat. 49, 335–348 (1994)

    MathSciNet  MATH  Google Scholar 

  94. Besau, F., Ludwig, M., Werner, E.M.: Weighted floating bodies and polytopal approximation. Trans. AMS 370, 7129–7148 (2018)

    MathSciNet  MATH  Google Scholar 

  95. Schütt, C.: The convex floating body and polyhedral approximation. Isr. J. Math. 73, 65–77 (1991)

    MathSciNet  MATH  Google Scholar 

  96. Brunel, V.: Concentration of the empirical level sets of Tukey’s halfspace depth. Probab. Theory Relat. Fields 173, 1165–1196 (2019)

    MathSciNet  MATH  Google Scholar 

  97. Anderson, J., Rademacher, L.: Efficiency of the floating body as a robust measure of dispersion. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, pp. 364–377 (2020)

  98. Bardakci, I.E., Lagoa, C.M.: Distributionally Robust Portfolio Optimization, 2019 IEEE 58th Conference on Decision and Control. https://doi.org/10.1109/CDC40024.2019.90293812019 (2019)

Download references

Acknowledgements

The authors want to thank the referee for the careful reading of the manuscript and the suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth M. Werner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B. Li: Partially by ERC Grant ERC-770127. E. M. Werner: Partially supported by NSF Grant DMS-1811146 and by a Simons Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Schütt, C. & Werner, E.M. Affine Invariant Maps for Log-Concave Functions. J Geom Anal 32, 123 (2022). https://doi.org/10.1007/s12220-022-00878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00878-3

Keywords

Mathematics Subject Classification

Navigation