Skip to main content
Log in

Dunford–Pettis type properties of locally convex spaces

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

In 1953, Grothendieck introduced and studied the Dunford–Pettis property (the \({\textrm{DP}}\) property) and the strict Dunford–Pettis property (the strict \({\textrm{DP}}\) property). The \({\textrm{DP}}\) property of order \(p\in [1,\infty ]\) for Banach spaces was introduced by Castillo and Sanchez in 1993. Being motivated by these notions, for \(p,q\in [1,\infty ],\) we define the quasi-Dunford–Pettis property of order p (the quasi \({\textrm{DP}}_p\) property) and the sequential Dunford–Pettis property of order (pq) (the sequential \({\textrm{DP}}_{(p,q)}\) property). We show that a locally convex space (lcs) E has the \({\textrm{DP}}\) property if the space E endowed with the Grothendieck topology \(\tau _{\Sigma '}\) has the weak Glicksberg property, and E has the quasi \({\textrm{DP}}_p\) property if the space \((E,\tau _{\Sigma '}) \) has the p-Schur property. We also characterize lcs with the sequential \({\textrm{DP}}_{(p,q)}\) property. Some permanent properties and relationships between Dunford–Pettis type properties are studied. Numerous (counter)examples are given. In particular, we give the first example of an lcs with the strict \({\textrm{DP}}\) property but without the \({\textrm{DP}}\) property and show that the completion of even normed spaces with the \({\textrm{DP}}\) property may not have the \({\textrm{DP}}\) property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afkir, F., Bouras, K., Elbour, A., El Filali, S.: Weak compactness of almost \(L\)-weakly and almost \(M\)-weakly compact operators. Quest. Math. 44, 1145–1154 (2021)

    Article  MathSciNet  Google Scholar 

  2. Albanese, A.A., Bonet, J., Ricker, W.J.: Grothendieck spaces with the Dunford–Pettis property. Positivity 14, 145–164 (2010)

    Article  MathSciNet  Google Scholar 

  3. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)

    Google Scholar 

  4. Banakh, T., Gabriyelyan, S.: Locally convex properties of Baire type function spaces. J. Convex Anal. 28, 803–818 (2021)

    MathSciNet  Google Scholar 

  5. Banakh, T., Gabriyelyan, S.: On free locally convex spaces. Filomat 36(18), 6393–6401 (2022)

    Article  MathSciNet  Google Scholar 

  6. Castillo, J.M.F., Sanchez, F.: Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Complut. 6(1), 43–59 (1993)

    MathSciNet  Google Scholar 

  7. Diestel, J.: Sequences and Series in Banach Spaces. GTM, vol. 92. Springer, Berlin (1984)

    Google Scholar 

  8. Dehghani, M.B., Moshtaghioun, S.M.: On the \(p\)-Schur property of Banach spaces. Ann. Funct. Anal. 9, 123–136 (2018)

    Article  MathSciNet  Google Scholar 

  9. Edwards, R.E.: Functional Analysis. Reinhart and Winston, New York (1965)

    Google Scholar 

  10. El Fahri, K., H’michane, J.: The relationship between almost Dunford–Pettis operators and almost limited operators. Quest. Math. 39, 487–496 (2016)

    Article  MathSciNet  Google Scholar 

  11. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Pelant, J., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. Springer, New York (2010)

    Google Scholar 

  12. Fourie, J.H., Zeekoei, E.D.: On \(p\)-convergent operators on Banach lattices. Acta Math. Sin. 34(5), 873–890 (2018)

    Article  MathSciNet  Google Scholar 

  13. Gabriyelyan, S.: The Mackey problem for free locally convex spaces. Forum Math. 30, 1339–1344 (2018)

    Article  MathSciNet  Google Scholar 

  14. Gabriyelyan, S.: Locally convex properties of free locally convex spaces. J. Math. Anal. Appl. 480, 123453 (2019)

    Article  MathSciNet  Google Scholar 

  15. Gabriyelyan, S.: Locally convex spaces and Schur type properties. Ann. Acad. Sci. Fenn. Math. 44, 363–378 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gabriyelyan, S.: Maximally almost periodic groups and respecting properties. In: Ferrando, J.C. (ed.) Descriptive Topology and Functional Analysis II, Springer Proceedings in Mathematics and Statistics, vol. 286, pp. 103–136 (2019)

  17. Gabriyelyan, S.: Pełczyński’s type sets and Pełczyński’s geometrical properties of locally convex spaces. Submitted. arXiv:2402.08860

  18. Gabriyelyan, S., Kakol, J.: Dunford–Pettis type properties for function spaces. Rev. Mat. Complut. 33, 871–884 (2020)

    Article  MathSciNet  Google Scholar 

  19. Ghenciu, I.: The \(p\)-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets. Acta Math. Hung. 155(2), 439–457 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ghenciu, I., Lewis, P.: The Dunford–Pettis property and the Gelfand–Phillips property, and \(L\)-sets. Colloq. Math. 106, 311–324 (2006)

    Article  MathSciNet  Google Scholar 

  21. Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, New York (1960)

    Book  Google Scholar 

  22. Grothendieck, A.: Sur les applications linéaires faiblement compactes d’espaces du type \(C(K)\). Can. J. Math. 5, 129–173 (1953)

    Article  Google Scholar 

  23. Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)

    Book  Google Scholar 

  24. Karn, A.K., Sinha, D.P.: An operator summability of sequences in Banach spaces. Glasg. Math. J. 56, 427–437 (2014)

    Article  MathSciNet  Google Scholar 

  25. Köthe, G.: Topological Vector Spaces, vol. I. Springer, Berlin (1969)

    Google Scholar 

  26. Li, L., Chen, D., Chávez-Domínguez, J.A.: Pełczyński’s property \((V^\ast )\) of order \(p\) and its quantification. Math. Nachr. 291, 420–442 (2018)

    Article  MathSciNet  Google Scholar 

  27. Markov, A.A.: On free topological groups. Dokl. Akad. Nauk SSSR 31, 299–301 (1941)

    Google Scholar 

  28. Narici, L., Beckenstein, E.: Topological Vector Spaces, 2nd edn. CRC Press, New York (2011)

    Google Scholar 

  29. Nouira, R., Lhaimer, D., Elbour, A.: Some results on almost \(L\)-weakly and almost \(M\)-weakly compact operators. Positivity 26(39) (2022)

  30. Pełczyński, A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bulletin de l’Académie Polonaise des Sciences 10, 641–648 (1962)

    MathSciNet  Google Scholar 

  31. Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies, vol. 131. North-Holland, Amsterdam (1987)

    Google Scholar 

  32. Pryce, J.D.: A device of R.J. Whitley’s applied to pointwise compactness in spaces of continuous functions. Proc. Lond. Math. Soc. 23, 532–546 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saak Gabriyelyan.

Additional information

Communicated by Vesko Valov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriyelyan, S. Dunford–Pettis type properties of locally convex spaces. Ann. Funct. Anal. 15, 55 (2024). https://doi.org/10.1007/s43034-024-00359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-024-00359-4

Keywords

Mathematics Subject Classification

Navigation