Skip to main content
Log in

The CMO-Dirichlet Problem for the Schrödinger Equation in the Upper Half-Space and Characterizations of CMO

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\mathcal {L}\) be a Schrödinger operator of the form \(\mathcal {L}=-\Delta +V\) acting on \(L^2({\mathbb {R}}^n)\) where the non-negative potential V belongs to the reverse Hölder class \(\mathrm{RH}_q\) for some \(q\ge (n+1)/2\). Let \(\mathrm{CMO}_{\mathcal {L}}(\mathbb {R}^n)\) denote the function space of vanishing mean oscillation associated to \(\mathcal {L}\). In this article, we will show that a function f of \(\mathrm{CMO}_{\mathcal {L}}(\mathbb {R}^n) \) is the trace of the solution to \(\mathbb {L}u=-u_{tt}+\mathcal {L}u=0\), \(u(x,0)=f(x)\), if and only if, u satisfies a Carleson condition

$$\begin{aligned} \sup _{B: \ \mathrm{balls}}\mathcal {C}_{u,B} :=\sup _{B(x_B,r_B): \ \mathrm{balls}} r_B^{-n}\int _0^{r_B}\int _{B(x_B, r_B)} \big |t \nabla u(x,t)\big |^2\, \frac{ \mathrm{dx}\, \mathrm{dt} }{t} <\infty , \end{aligned}$$

and

$$\begin{aligned} \lim _{a \rightarrow 0}\sup _{B: r_{B} \le a} \,\mathcal {C}_{u,B} = \lim _{a \rightarrow \infty }\sup _{B: r_{B} \ge a} \,\mathcal {C}_{u,B} = \lim _{a \rightarrow \infty }\sup _{B: B \subseteq \left( B(0, a)\right) ^c} \,\mathcal {C}_{u,B}=0. \end{aligned}$$

This continues the lines of the previous characterizations by Duong et al. (J Funct Anal 266(4):2053–2085, 2014) and Jiang and Li (ArXiv:2006.05248v1) for the \(\mathrm{BMO}_{\mathcal {L}}\) spaces, which were founded by Fabes et al. (Indiana Univ Math J 25:159–170, 1976) for the classical BMO space. For this purpose, we will prove two new characterizations of the \(\mathrm{CMO}_{\mathcal {L}}(\mathbb {R}^n)\) space, in terms of mean oscillation and the theory of tent spaces, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. CMO is also called VMO in [22].

References

  1. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)

    Article  MathSciNet  Google Scholar 

  2. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  Google Scholar 

  3. Fabes, E., Johnson, R., Neri, U.: Spaces of harmonic functions representable by Poisson integrals of functions in BMO and \({\cal{L}}_{p,\lambda }\). Indiana Univ. Math. J. 25, 159–170 (1976)

    Article  MathSciNet  Google Scholar 

  4. Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of \(H^p\)-spaces. Acta Math. 103, 25–62 (1960)

    Article  MathSciNet  Google Scholar 

  5. Fabes, E., Neri, U.: Characterization of temperatures with initial data in BMO. Duke Math. J. 42, 725–734 (1975)

    Article  MathSciNet  Google Scholar 

  6. Fabes, E., Neri, U.: Dirichlet problem in Lipschitz domains with BMO data. Proc. Am. Math. Soc. 78, 33–39 (1980)

    Article  MathSciNet  Google Scholar 

  7. Dindos, M., Kenig, C., Pipher, J.: BMO solvability and the \(A_{\infty }\) condition for elliptic operators. J. Geom. Anal. 21(1), 78–95 (2011)

    Article  MathSciNet  Google Scholar 

  8. Jiang, R.J., Xiao, J., Yang, D.C.: Towards spaces of harmonic functions with traces in square Campanato spaces and their scaling invariants. Anal. Appl. 14(5), 679–703 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: \(\rm BMO\) spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249, 329–356 (2005)

    Article  MathSciNet  Google Scholar 

  10. Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished preprint (2005)

  11. Duong, X.T., Yan, L.X.: New function spaces of BMO type, the John–Nirenberg inequality, interpolation, and applications. Commun. Pure Appl. Math. 58, 1375–1420 (2005)

    Article  MathSciNet  Google Scholar 

  12. Auscher, P., McIntosh, A., Russ, E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18(1), 192–248 (2008)

    Article  MathSciNet  Google Scholar 

  13. Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(1), 37–116 (2009)

    Article  MathSciNet  Google Scholar 

  14. Shen, Z.W.: On the Neumann problem for Schrödinger operators in Lipschitz domains. Indiana Univ. Math. J. 43(1), 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  15. Shen, Z.W.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995)

    Article  MathSciNet  Google Scholar 

  16. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46(1), 27–42 (1979)

    Article  MathSciNet  Google Scholar 

  17. Duong, X.T., Yan, L.X.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)

    Article  MathSciNet  Google Scholar 

  18. Duong, X.T., Yan, L.X., Zhang, C.: On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal. 266(4), 2053–2085 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jiang, R.J., Li, B.: On the Dirichlet problem for the Schrödinger equation with boundary value in BMO space. ArXiv:2006.05248v1

  20. Martell, J.M., Mitrea, D., Mitrea, I., Mitrea, M.: The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO. Anal. PDE 12(3), 605–720 (2019)

    Article  MathSciNet  Google Scholar 

  21. Sarason, D.: Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975)

    Article  MathSciNet  Google Scholar 

  22. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Article  MathSciNet  Google Scholar 

  23. Martell, J.M., Mitrea, D., Mitrea, I., Mitrea, M.: Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space. Algebra Anal. 31(2), 3–50 (2019). (reprinted in St. Petersburg Math. J. 31(2), 189–222 (2020))

  24. Deng, D.G., Duong, X.T., Song, L., Tan, C.Q., Yan, L.X.: Functions of vanishing mean oscillation associated with operators and applications. Mich. Math. J. 56(3), 529–550 (2008)

    Article  MathSciNet  Google Scholar 

  25. Ky, L.D.: On weak*-convergence in \(H_{L}^1({\mathbb{R}}^d)\). Potential Anal. 39(4), 355–368 (2013)

    Article  MathSciNet  Google Scholar 

  26. Coifman, R.R., Meyer, Y., Stein, E.M.: Un nouvel éspace fonctionnel adapté à l’étude des opérateurs définis par des intégrales singulières. In: Proceedings of Conference in Harmonic Analysis (Cortona), Lecture Notes in Mathematics, vol. 992, pp. 1–15. Springer, Berlin (1983)

  27. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)

    Article  MathSciNet  Google Scholar 

  28. Song, L., Xu, M.: VMO spaces associated with divergence form elliptic operators. Math. Z. 269, 927–943 (2011)

    Article  MathSciNet  Google Scholar 

  29. Jiang, R.J., Yang, D.C.: Generalized vanishing mean oscillation spaces associated with divergence form elliptic operators. Integr. Equ. Oper. Theory 67, 123–149 (2010)

    Article  MathSciNet  Google Scholar 

  30. Uchiyama, A.: On the compactness of operators of Hankel type. Tohoku Math. J. 30, 163–171 (1978)

    MathSciNet  MATH  Google Scholar 

  31. Neri, U.: Fractional integration on the space \(H^1\) and its dual. Stud. Math. 53(2), 175–189 (1975)

    Article  Google Scholar 

  32. Dafni, G.: Local VMO and weak convergence in \(h^1\). Can. Math. Bull. 45(1), 46–59 (2002)

    Article  MathSciNet  Google Scholar 

  33. Wang, W.S.: The characterization of \(\lambda _\alpha ({\mathbb{R}}^n)\) and the predual spaces of tent space. Acta. Sci. Natur. Univ. Pekinensis 24, 535–550 (1988)

    Google Scholar 

  34. Dziubański, J., Zienkiewicz, J.: \(H^p\) spaces for Schrödinger operators. Fourier analysis and related topics (Bedlewo, 2000), pp. 45–53, Banach Center Publisher, 56, Polish Academics Science Institute Mathematics, Warsaw (2002)

  35. Ma, T., Stinga, P., Torrea, J., Zhang, C.: Regularity properties of Schrödinger operators. J. Math. Anal. Appl. 388, 817–837 (2012)

    Article  MathSciNet  Google Scholar 

  36. Yosida, K.: Functional Analysis, 5th edn. Springer, Berlin (1978)

    Book  Google Scholar 

  37. Auscher, P.: On necessary and sufficient conditions for \(L^p-\)estimates of Riesz transforms associated to elliptic operators on \({\mathbb{R}}^n\) and related estimates. Mem. Am. Math. Soc. 186, 871 (2007)

    Google Scholar 

  38. Chen, J.C., Luo, C.: Duality of \({\rm H}^1\) and BMO on positively curved manifolds and their characterizations. Harmonic analysis (Tianjin, 1988), 23–38. Lecture Notes in Mathematics, vol. 1494. Springer, Berlin (1991)

  39. Duong, X.T., Li, J.: Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264(6), 1409–1437 (2013)

    Article  MathSciNet  Google Scholar 

  40. Hofmann, S., Lu, G.Z., Mitrea, D., Mitrea, M., Yan, L.X.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates. Mem. Am. Math. Soc. 214, 1007 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Huang, J.Z., Wang, Y.Q., Li, W.W.: A new version of Carleson measure associated with Hermite operator. J. Inequal. Appl. 177, 20 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lixin Yan for helpful suggestions. L. Song is supported by NNSF of China (No. 12071490). L.C. Wu is supported by Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110251) and Fundamental Research Funds for the Central Universities (No. 20lgpy141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchuan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Wu, L. The CMO-Dirichlet Problem for the Schrödinger Equation in the Upper Half-Space and Characterizations of CMO. J Geom Anal 32, 130 (2022). https://doi.org/10.1007/s12220-022-00875-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-022-00875-6

Keywords

Mathematics Subject Classification

Navigation