Skip to main content

Advertisement

Log in

p-Bessel Pairs, Hardy’s Identities and Inequalities and Hardy–Sobolev Inequalities with Monomial Weights

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we first prove a general symmetrization principle for the Hardy type inequality with non-radial weights of the form \(A\left( \left| x\right| \right) \left| x_{1}\right| ^{P_{1}}\ldots \left| x_{N}\right| ^{P_{N}}\) (Theorem 1.1). Using this symmetrization principle for Hardy’s inequalities, we can establish the improved \(L^{p} \)-Hardy inequalities with such non-radial monomial weights (Theorem 1.2). Second, we introduce the notion of p-Bessel pairs and give applications to \(L^{p}\)-Hardy identities with non-radial monomial weights (Theorem 1.3) and Hardy inequalities (see Theorem 1.4) and their virtual extremals (see Remark 1.2). (See Theorem 1.5 for the special case \(p=2\) where we derive \(L^{2}\)-Hardy identities and inequalities with monomial weights which have not been studied in the literature). In the special case when \(P=(0,\ldots ,0)\), they imply the \(L^{p}\)-Hardy identities and Hardy inequalities with remainder terms on any finite balls and the entire space \({\mathbb {R}}^{N}\) (Theorem 1.6), while in the special case \(P=(0,\ldots ,0,\alpha )\), \(\alpha >0\), our results provide the \(L^{p}\)-Hardy identities and Hardy inequalities on half balls and the half spaces (Theorem 1.7). By taking special examples of p-Bessel pairs, we establish some particular Hardy’s identities and weighted Sobolev inequalities which are of independent interest. We also establish the optimal Hardy inequalities with monomial weights and explicit forms of extremal functions. (See Corollaries 1.1, 1.2, 1.3, 1.4, 1.5.) Our above results sharpened earlier results in the literature even in the case of \(L^{2}\) Hardy inequalities. Finally, we establish the sharp constants and optimal functions of the \(L^{p}\)-Hardy–Sobolev inequalities with monomial weights (Theorem 1.8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften, vol. 348. Springer, Berlin (2013)

  2. Balinsky, A.A., Evans, W.D., Lewis, R.T.: The Analysis and Geometry of Hardy’s Inequality. Universitext. Springer, Cham (2015)

  3. Barbatis, G., Filippas, S., Tertikas, A.: A unified approach to improved \(L^{\mathit{p}}\) Hardy inequalities with best constants. Trans. Am. Math. Soc. 356(6), 2169–2196 (2004)

    Article  Google Scholar 

  4. Beckner, W.: On Hardy–Sobolev embedding. arXiv:0907.3932

  5. Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24(1), 177–209 (2012)

    Article  MathSciNet  Google Scholar 

  6. Benguria, R.D., Frank, R.L., Loss, M.: The sharp constant in the Hardy–Sobolev–Maz’ya inequality in the three dimensional upper half-space. Math. Res. Lett. 15(4), 613–622 (2008)

    Article  MathSciNet  Google Scholar 

  7. Bliss, G.A.: An integral inequality. J. Lond. Math. Soc. 5(1), 40–46 (1930)

    Article  Google Scholar 

  8. Brezis, H.: Is there failure of the inverse function theorem? Morse theory, minimax theory and theirapplications to nonlinear differential equations. In: Proceedings of Workshop held at the Chinese Academy of Sciences, Beijing, 1999, pp. 23–33. New Stud. Adv. Math., vol. 1. International Press, Somerville (2003)

  9. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2), 217–237 (1997), 217–237 (1998)

  10. Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10, 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Cabré, X., Ros-Oton, X.: Regularity of stable solutions up to dimension 7 in domains of double revolution. Commun. Partial Differ. Equ. 38, 135–154 (2013)

    Article  MathSciNet  Google Scholar 

  12. Cabré, X., Ros-Oton, X.: Sobolev and isoperimetric inequalities with monomial weights. J. Differ. Equ. 255(11), 4312–4336 (2013)

    Article  MathSciNet  Google Scholar 

  13. Cabré, X., Ros-Oton, X., Serra, J.: Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc. (JEMS) 18(12), 2971–2998 (2016)

    Article  MathSciNet  Google Scholar 

  14. Castro, H.: Hardy–Sobolev-type inequalities with monomial weights. Ann. Mat. Pura Appl. (4) 196(2), 579–598 (2017)

    Article  MathSciNet  Google Scholar 

  15. Catrina, F., Wang, Z.-Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54(2), 229–258 (2001)

    Article  MathSciNet  Google Scholar 

  16. Cazacu, C.: The method of super-solutions in Hardy and Rellich type inequalities in the \(L^{2}\) setting: an overview of well-known results and short proofs. Rev. Roumaine Math. Pures Appl. (to appear). Preprint. arXiv:2003.11798

  17. Cazacu, C., Zuazua, E.: Improved multipolar Hardy inequalities. In: Studies in Phase Space Analysis with Applications to PDEs. The Progress in Nonlinear Differential Equations and Their Applications, vol. 84, pp. 35–52. Birkhäuser/Springer, New York (2013)

  18. Cinti, E., Glaudo, F., Pratelli, A., Ros-Oton, X., Serra, J.: Sharp quantitative stability for isoperimetric inequalities with homogeneous weights. arXiv:2006.13867

  19. Dao, N.A., Do, X.A., Duy, N.T., Lam, N.: Hardy type identities on \({\mathbb{R}}^{n-k}\times \left( {\mathbb{R}}_{+}\right) ^{k}\) via factorizations. Vietnam J. Math. (to appear)

  20. Devyver, B., Pinchover, Y., Psaradakis, G.: Optimal Hardy inequalities in cones. Proc. R. Soc. Edinb. Sect. A 147(1), 89–124 (2017)

    Article  MathSciNet  Google Scholar 

  21. Dong, M., Lam, N., Lu, G.: Sharp weighted Trudinger–Moser and Caffarelli–Kohn–Nirenberg inequalities and their extremal functions. Nonlinear Anal. 173, 75–98 (2018)

    Article  MathSciNet  Google Scholar 

  22. Dong, M., Lu, G.: Best constants and existence of maximizers for weighted Trudinger–Moser inequalities. Calc. Var. Partial Differ. Equ. 55(4), Art. 88 (2016)

  23. Duy, N.T., Nghia, L.T., Phi, L.L.: Sharp Trudinger–Moser inequalities with homogeneous weights. Electron. J. Differ. Equ. 105, 1–16 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Duy, N.T., Lam, N., Triet, N.A.: Improved Hardy and Hardy–Rellich type inequalities with Bessel pairs via factorizations. J. Spectr. Theory 10(4), 1277–1302 (2020)

    Article  MathSciNet  Google Scholar 

  25. Duy, N.T., Phi, L.L., Son, N.T.: Hardy and Caffarelli–Kohn–Nirenberg inequalities with nonradial weights. Electron. J. Differ. Equ. 33, 1–10 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Filippas, S., Maz’ya, V., Tertikas, A.: Sharp Hardy–Sobolev inequalities. C. R. Math. Acad. Sci. Paris 339(7), 483–486 (2004)

    Article  MathSciNet  Google Scholar 

  27. Filippas, S., Maz’ya, V., Tertikas, A.: Critical Hardy–Sobolev inequalities. J. Math. Pures Appl. (9) 87(1), 37–56 (2007)

    Article  MathSciNet  Google Scholar 

  28. Flynn, J.: Sharp Caffarelli–Kohn–Nirenberg-type inequalities on Carnot groups. Adv. Nonlinear Stud. 20(1), 95–111 (2020)

  29. Flynn, J., Lam, N., Lu, G.: Sharp Hardy identities and inequalities on Carnot groups. Adv. Nonlinear Stud. 21(2), 281–302 (2021)

    Article  MathSciNet  Google Scholar 

  30. Flynn, J., Lam, N., Lu, G.: \(L^{p}\) Hardy identities and inequalities on Riemannian manifolds. Preprint

  31. Flynn, J., Lam, N., Lu, G.: \(L^{p}\) Hardy identities and inequalities with respect to the distance and mean distance to the boundary. Preprint

  32. Flynn, J., Lam, N., Lu, G.: Hardy–Poincaré–Sobolev type inequalities on hyperbolic spaces and related Riemannian manifolds. Preprint

  33. Flynn, J., Lam, N., Lu, G.: Mazumdar, S.; Hardy’s identities and inequalities on Cartan–Hadamard manifolds. arXiv:2103.12788

  34. Frank, R.L.: Sobolev Inequalities and Uncertainty Principles in Mathematical Physics: Part 1. Lecture Notes. LMU Munich, Munich (2011)

  35. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255(12), 3407–3430 (2008)

    Article  MathSciNet  Google Scholar 

  36. Gazzola, F., Grunau, H.-C., Mitidieri, E.: Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc. 356(6), 2149–2168 (2004)

    Article  MathSciNet  Google Scholar 

  37. Gesztesy, F., Littlejohn, L.L.: Factorizations and Hardy–Rellich-type inequalities. In: Non-linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. EMS Ser. Congr. Rep., pp. 207–226. European Mathematical Society, Zürich (2018)

  38. Gesztesy, F., Littlejohn, L., Michael, I., Pang, M.: Radial and logarithmic refinements of Hardy’s inequality. Reprinted in St. Petersburg Math. J. 30(3), 429–436 (2019). Algebra i Analiz 30(3), 55–65 (2018)

  39. Ghoussoub, N., Moradifam, A.: Bessel pairs and optimal Hardy and Hardy–Rellich inequalities. Math. Ann. 349(1), 1–57 (2011)

    Article  MathSciNet  Google Scholar 

  40. Ghoussoub, N., Moradifam, A.: Functional Inequalities: New Perspectives and New Applications. Mathematical Surveys and Monographs, vol. 187. American Mathematical Society, Providence (2013)

  41. Hardy, G.H.: An inequality between integrals. Messenger Math. 54, 150–156 (1925)

    Google Scholar 

  42. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988)

  43. Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type. World Scientific, River Edge (2003).. (xviii+357 pp)

    Book  Google Scholar 

  44. Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality. About Its History and Some Related Results. Vydavatelský Servis, Pilsen (2007)

    MATH  Google Scholar 

  45. Lam, N.: Sharp Trudinger–Moser inequalities with monomial weights. NoDEA Nonlinear Differ. Equ. Appl. 24(4), Art. 39 (2017)

  46. Lam, N.: General sharp weighted Caffarelli–Kohn–Nirenberg inequalities. Proc. R. Soc. Edinb. Sect. A 149(3), 691–718 (2019)

    Article  MathSciNet  Google Scholar 

  47. Lam, N.: Sharp weighted isoperimetric and Caffarelli–Kohn–Nirenberg inequalities. Adv. Calc. Var. 14(2), 153–169 (2021)

    Article  MathSciNet  Google Scholar 

  48. Lam, N., Lu, G.: Sharp constants and optimizers for a class of Caffarelli–Kohn–Nirenberg inequalities. Adv. Nonlinear Stud. 17(3), 457–480 (2017)

    Article  MathSciNet  Google Scholar 

  49. Lam, N., Lu, G., Zhang, L.: Factorizations and Hardy’s type identities and inequalities on upper half spaces. Calc. Var. Partial Differ. Equ.58(6), Art. 183 (2019)

  50. Lam, N., Lu, G., Zhang, L.: Geometric Hardy’s inequalities with general distance functions. J. Funct. Anal. 279(8), 108673 (2020)

    Article  MathSciNet  Google Scholar 

  51. Lu, G., Yang, Q.: Paneitz operators and Hardy–Sobolev–Maz’ya inequalities for higher order derivatives on half spaces. Am. J. Math. 141(6), 1777–1816 (2019)

    Article  Google Scholar 

  52. Lu, G., Yang, Q.: Green’s functions of Paneitz and GJMS operators on hyperbolic spaces and sharp Hardy–Sobolev–Maz’ya inequalities on half spaces. Adv. Math. https://doi.org/10.1016/j.aim.2021.108156

  53. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342. Springer, Heidelberg (2011)

  54. Maz’ya, V.: Seventy five (thousand) unsolved problems in analysis and partial differential equations. Integral Equ. Oper. Theory 90(2), 1–44 (2018)

    Article  MathSciNet  Google Scholar 

  55. Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972)

    Article  MathSciNet  Google Scholar 

  56. Nguyen, V.H.: Sharp weighted Sobolev and Gagliardo–Nirenberg inequalities on half-spaces via mass transport and consequences. Proc. Lond. Math. Soc. (3) 111(1), 127–148 (2015)

    Article  MathSciNet  Google Scholar 

  57. Nguyen, H.-M., Squassina, M.: On Hardy and Caffarelli–Kohn–Nirenberg inequalities. J. Anal. Math. 139(2), 773–797 (2019)

    Article  MathSciNet  Google Scholar 

  58. Opic, B., Kufner, A.: Hardy-Type inIqualities. Pitman Research Notes in Mathematics Series, vol. 219. Longman Scientific & Technical, Harlow (1990)

  59. Vázquez, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173(1), 103–153 (2000)

    Article  MathSciNet  Google Scholar 

  60. Wang, J.: Weighted Hardy–Sobolev, Log–Sobolev and Moser-Onofri—Beckner inequalities with monomial weights. Potential Anal. (2021). https://doi.org/10.1007/s11118-021-09938-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for many useful comments on the earlier version which have helped its exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Lam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guozhen Lu was partially supported by a grant from the Simons Foundation. Nguyen Lam was partially supported by an NSERC Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duy, N.T., Lam, N. & Lu, G. p-Bessel Pairs, Hardy’s Identities and Inequalities and Hardy–Sobolev Inequalities with Monomial Weights. J Geom Anal 32, 109 (2022). https://doi.org/10.1007/s12220-021-00847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00847-2

Keywords

Mathematics Subject Classification

Navigation