Skip to main content
Log in

Szegö kernel equivariant asymptotics under Hamiltonian Lie group actions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Suppose that a compact and connected Lie group G acts on a complex Hodge manifold M in a holomorphic and Hamiltonian manner, and that the action linearizes to a positive holomorphic line bundle A on M. Then there is an induced unitary representation on the associated Hardy space and, if the moment map of the action is nowhere vanishing, the corresponding isotypical components are all finite dimensional. We study the asymptotic concentration behavior of the corresponding equivariant Szegö kernels near certain loci defined by the moment map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. i.e., belonging to the open positive Weyl chamber

  2. We may interpret \(x+\mathbf {v}\) in terms of a system of Hesenberg local coordinates on X centered at x [17], smoothly varying with x, see §5.

References

  1. Bleher, P., Shiffman, B., Zelditch, S.: Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142, 351–395 (2000)

    Article  MathSciNet  Google Scholar 

  2. Boutet de Monvel, L., Sjöstrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Astérisque 34–35, 123–164 (1976)

    MATH  Google Scholar 

  3. Camosso, S.: Scaling asymptotics of Szegö kernels under commuting Hamiltonian actions. Ann. Mat. Pura Appl. 6, 2027–2059 (2016)

    Article  MathSciNet  Google Scholar 

  4. Catlin, D.: The Bergman kernel and a theorem of Tian. In: Analysis and Geometry in Several Complex Variables (Katata 1997), Trends Math., pp. 1–23. Birkhäuser, Boston (1999)

  5. Galasso, A., Paoletti, R.: Equivariant Asymptotics of Szegö kernels under Hamiltonian \(U(2)\) actions. Ann. Mat. Pura Appl. 2, 639–683 (2019)

    Article  Google Scholar 

  6. Galasso, A., Paoletti, R.: Equivariant asymptotics of Szegö kernels under Hamiltonian SU(2)-actions. Asian J. Math. 24(3), 501–532 (2020)

    Article  MathSciNet  Google Scholar 

  7. Guillemin, V., Sternberg, S.: Homogeneous quantization and multiplicities of group representations. J. Funct. Anal. 47(3), 344–380 (1982)

    Article  MathSciNet  Google Scholar 

  8. Guillemin, V., Sternberg, S.: Geometric quantization and multiplicities of group representations. Invent. Math. 67(3), 515–538 (1982)

    Article  MathSciNet  Google Scholar 

  9. Kirillov, A.A.: Lectures on the orbit method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, RI, 2004. xx+408 pp. ISBN: 0-8218-3530-0

  10. Kostant, B.: Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, pp. 87–208. Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970

  11. Libine, M.: A localization argument for characters of reductive Lie groups: an introduction and examples, Noncommutative harmonic analysis, 375–393, Progr. Math., 220, Birkhäuser Boston, Boston, MA, 2004

  12. Paoletti, R.: Asymptotics of Szegö kernels under Hamiltonian torus actions. Israel Journal of Mathematics 191(1), 363–403 (2012). https://doi.org/10.1007/s11856-011-0212-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Paoletti, R.: Lower-order asymptotics for Szegö and Toeplitz kernels under Hamiltonian circle actions, Recent advances in algebraic geometry, 321–369, London Math. Soc. Lecture Note Ser., 417, Cambridge Univ. Press, Cambridge, 2015

  14. Paoletti, R.: Conic reductions for Hamitonian actions of \(U(2)\) and its maximal torus, https://arxiv.org/abs/2002.08105v1

  15. Paoletti, R.: Polarized orbifolds associated to quantized Hamiltonian torus actions. J. Geom. Phys. 170, 104363 (2021)

  16. Rossmann, W.: Kirillov’s character formula for reductive Lie groups. Invent. Math. 48(3), 207–220 (1978)

    Article  MathSciNet  Google Scholar 

  17. Shiffman, B., Zelditch, S.: Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math. 544, 181–222 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Sternberg, S.: Group theory and physics, Cambridge University Press, Cambridge, 1994. xiv+429 pp. ISBN: 0-521-24870-1

  19. Sugiura, M.: Fourier series of smooth functions on compact Lie groups. Osaka Math. J. 8, 33–47 (1971)

    MathSciNet  MATH  Google Scholar 

  20. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32(1), 99–130 (1990)

  21. Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. Reprint of the: edition, p. 1984. Graduate Texts in Mathematics Springer-Verlag, New York (1974)

  22. Varadarajan, V.S.: An introduction to harmonic analysis on semisimple Lie groups, Corrected reprint of the 1989 original. Cambridge Studies in Advanced Mathematics, 16. Cambridge University Press, Cambridge, 1999. x+316 pp. ISBN: 0-521-34156-6

  23. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

this study was supported by Universitá degli Studi di Milano-Bicocca (Grant No. 2017-ATE-0253). I am endebted to the referee for suggesting several improvements in presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Paoletti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paoletti, R. Szegö kernel equivariant asymptotics under Hamiltonian Lie group actions. J Geom Anal 32, 112 (2022). https://doi.org/10.1007/s12220-021-00829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00829-4

Keywords

Mathematics Subject Classification

Navigation