Skip to main content
Log in

Almost Hermitian Ricci flow

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We introduce a new curvature flow which matches with the Ricci flow on metrics and preserves the almost Hermitian condition. This enables us to use Ricci flow to study almost Hermitian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, B., Nguyen, H.: Four-manifolds with \(\frac{1}{4}\)-pinched flag curvatures. Asian J. Math. 13(2), 251–270 (2009)

    Article  MathSciNet  Google Scholar 

  2. Brendle, S., Schoen, R.: Classification of manifolds with weakly \(\text{ ij }\)-pinched curvatures. Acta Math. 200(1), 1–13 (2008)

    Article  MathSciNet  Google Scholar 

  3. Brendle, S., Schoen, R.: Manifolds with \(\text{ ij }\)-pinched curvature are space forms. J. Am. Math. Soc. 22(1), 287–307 (2009)

    Article  Google Scholar 

  4. Dai, S.: A curvature flow unifying symplectic curvature flow and pluriclosed flow. Pac. J. Math. 277(2), 287–311 (2015)

    Article  MathSciNet  Google Scholar 

  5. Gauduchon, P.: Hermitian connections and dirac operators. Bolletino U.M.I 11–B(2), 257–288 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Gill, M.: Convergence of the parabolic complex Monge-Ampére equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011)

    Article  Google Scholar 

  7. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geo. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Kelleher, C.L.: Symplectic curvature flow revisited (2018)

  9. Kobyashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1–2. Wiley, New York (1996)

    Google Scholar 

  10. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:math/0211159

  11. Perelman, G.: Finite extinction time for the solutions to the ricci flow on certain three-manifolds (2002). arXiv:math.DG/0211159v1

  12. Streets, J., Tian, G.: Symplectic curvature flow. J. Reine Angew. Math. (Crelles J.) (2011)

  13. Streets, J., Tian, G.: Regularity results for pluriclosed flow. Geom. Topol. 2389–2429 (2013)

  14. Song, J., Tian, G.: The Kähler-Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey Lynn Kelleher.

Additional information

Casey Lynn Kelleher was supported by a National Science Foundation postdoctoral fellowship and Gang Tian is partially supported by NSFC grant 11890660.

Appendix

Appendix

Lemma 4.4

For \(\left( M^n, J ,\omega \right) \) almost Hermitian, the vector field defined in (4.12) is

$$\begin{aligned} Z^p \equiv g^{uk} \left( {\overline{\Gamma }}_{ku}^p- \Gamma _{ku}^p \right) + \vartheta ^p. \end{aligned}$$

Proof

Starting with (4.12) we combute

$$\begin{aligned} \begin{aligned} Z^p&= \omega ^{kl} \left( {\overline{\nabla }}_k J_l^p \right) \\&= \omega ^{kl} \left( \partial _k J_l^p \right) -\omega ^{kl} {\overline{\Gamma }}_{kl}^m J_m^p + \omega ^{kl} {\overline{\Gamma }}_{km}^p J^m_l \\&= \omega ^{kl} \left( \nabla _k J_l^p + \Upsilon _{kl}^u J_u^p - \Upsilon _{ku}^p J_l^u \right) -{\overline{\Gamma }}_{kl}^m J_m^p \omega ^{kl} + {\overline{\Gamma }}_{km}^p g^{mk} \\&= \omega ^{kl}\Upsilon _{kl}^u J_u^p - \Upsilon _{ku}^p g^{uk}+ {\overline{\Gamma }}_{km}^p g^{mk}. \end{aligned} \end{aligned}$$
(4.16)

Let’s investigate these terms. For the first, by Lemma 2.7,

$$\begin{aligned} \omega ^{kl}\Upsilon _{kl}^u J_u^p&= \omega ^{kl}\left( \Gamma _{kl}^u - \Theta _{kl}^u \right) J_u^p \\&= 0. \end{aligned}$$

For the next term

$$\begin{aligned} \Upsilon ^p_{ku} g^{uk}&= \left( \Gamma ^p_{ku} - \Theta _{ku}^p \right) g^{uk} \\&= g^{uk} \Gamma ^p_{ku} + \vartheta ^p. \end{aligned}$$

Inserting these into (4.16) yields the result. \(\square \)

We now justify (2.3) above regarding the type decompositions of \(TM_{\otimes 3}\) by determining the corresponding projections into \(TM_{\otimes 3}^{1,2+2,1}\) and \(TM_{\otimes 3}^{3,0+0,3}\).

Lemma 4.5

For \((M^n, \omega , J)\) almost Hermitian,

$$\begin{aligned} F^{3,0+0,3}_{ijk}&\equiv \frac{1}{4} \left( F_{ijk} -J_j^b J_k^c F_{ibc} - J_i^a J_k^c F_{ajc} - J_i^a J_j^b F_{abk} \right) , \\ F^{2,1+1,2}_{ijk}&\equiv \frac{3}{4}F_{ijk} + \frac{1}{4} \left( J_j^b J_k^c F_{ibc} + J_i^a J_k^c F_{ajc} + J_i^a J_j^b F_{abk} \right) . \end{aligned}$$

Proof

For a vector field \(X \in TM\), define the projections

$$\begin{aligned} \Pi _{1,0} X \triangleq \frac{1}{2} \left( X + iJ X \right) , \qquad \Pi _{0,1} X \triangleq \frac{1}{2} \left( X - iJX \right) . \end{aligned}$$

With this we have that

$$\begin{aligned}&\left( \Pi _{3,0} F \right) \left( X,Y,Z \right) \\&\quad = F \left( \Pi _{1,0} X, \Pi _{1,0} Y, \Pi _{1,0} Z \right) \\&\quad = \frac{1}{8} F \left( X,Y,Z \right) + i \frac{1}{8} F\left( X,Y,JZ \right) + i \frac{1}{8} F \left( X,JY,Z \right) + \left( i \right) ^2 \frac{1}{8} F \left( X,JY,JZ \right) \\&\qquad \quad + i \frac{1}{8} F \left( JX,Y,Z \right) + \left( i \right) ^2 \frac{1}{8} F \left( JX,Y,JZ \right) \\&\qquad \quad + \left( i \right) ^2 \frac{1}{8} F \left( JX,JY,Z \right) + \left( i \right) ^3 \frac{1}{8} F \left( JX,JY,JZ \right) \\&\quad = \frac{1}{8} F \left( X,Y,Z \right) + i \frac{1}{8} F\left( X,Y,JZ \right) + i \frac{1}{8} F \left( X,JY,Z \right) - \frac{1}{8} F \left( X,JY,JZ \right) \\&\qquad \quad + i \frac{1}{8} F \left( JX,Y,Z \right) - \frac{1}{8} F \left( JX,Y,JZ \right) -\frac{1}{8} F \left( JX,JY,Z \right) \\ {}&\quad \qquad - i \frac{1}{8} F \left( JX,JY,JZ \right) . \end{aligned}$$

Similarly, we have that

$$\begin{aligned}&\left( \Pi _{0,3} F \right) \left( X,Y,Z \right) \\&\quad = F \left( \Pi _{0,1} X, \Pi _{0,1} Y, \Pi _{0,1} Z \right) \\&\quad = \frac{1}{8} F \left( X,Y,Z \right) - i \frac{1}{8} F\left( X,Y,JZ \right) - i \frac{1}{8} F \left( X,JY,Z \right) + \left( i \right) ^2 \frac{1}{8} F \left( X,JY,JZ \right) \\&\qquad \quad - i \frac{1}{8} F \left( JX,Y,Z \right) + \left( i \right) ^2 \frac{1}{8} F \left( JX,Y,JZ \right) \\&\qquad \quad + \left( i \right) ^2 \frac{1}{8} F \left( JX,JY,Z \right) - \left( i \right) ^3 \frac{1}{8} F \left( JX,JY,JZ \right) \\&\quad = \frac{1}{8} F \left( X,Y,Z \right) - i \frac{1}{8} F\left( X,Y,JZ \right) - i \frac{1}{8} F \left( X,JY,Z \right) - \frac{1}{8} F \left( X,JY,JZ \right) \\&\qquad \quad - i \frac{1}{8} F \left( JX,Y,Z \right) - \frac{1}{8} F \left( JX,Y,JZ \right) - \frac{1}{8} F \left( JX,JY,Z \right) \\&\quad \qquad + i \frac{1}{8} F \left( JX,JY,JZ \right) . \end{aligned}$$

Therefore we have that

$$\begin{aligned}&\left( \Pi _{3,0} F + \Pi _{0,3} F \right) \left( X,Y,Z \right) \\&\quad = \frac{1}{4} \left( F \left( X,Y,Z \right) - F \left( X,JY,JZ \right) - F \left( JX,Y,JZ \right) - F \left( JX,JY,Z \right) \right) . \end{aligned}$$

Now we compute

$$\begin{aligned}&\left( \Pi _{2,1}F + \Pi _{1,2} F \right) \left( X,Y,Z \right) \\&\quad = \left( F \left( X,Y,Z \right) - \left( \Pi _{3,0} F + \Pi _{0,3} F \right) \right) \left( X,Y,Z \right) \\&\quad = \frac{3}{4} F \left( X,Y,Z \right) + \frac{1}{4} \left( F \left( X,JY,JZ \right) + F \left( JX,Y,JZ \right) + F \left( JX,JY,Z \right) \right) . \end{aligned}$$

Converting to coordinates yields the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelleher, C.L., Tian, G. Almost Hermitian Ricci flow. J Geom Anal 32, 107 (2022). https://doi.org/10.1007/s12220-021-00797-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00797-9

Keywords

Navigation