Skip to main content

Advertisement

Log in

Polynomial Inequalities in Lebesgue Spaces with Variable Exponents on the Sphere

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Various important inequalities, such as Bernstein, Kolmogorov, Marcinkiewicz–Zygmund, Nikolskii, and so on, have been proved in the usual Lebesgue spaces on the sphere. The main purpose of this paper is to prove analogues of these results. We establish analogous inequalities in Lebesgue spaces with variable exponents on the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a mistake in the proof of [17, Theorem 8.1]. However, Kolmogorov-type inequalities on the sphere are true.

References

  1. Acerbi, E., Mingione, G.: Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris 334(2), 817–822 (2002)

    Article  MathSciNet  Google Scholar 

  2. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164(3), 213–259 (2002)

    Article  MathSciNet  Google Scholar 

  3. Akgün, R.: Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth. Georgian Math. J. 18(2), 203–235 (2011)

    Article  MathSciNet  Google Scholar 

  4. Brown, G., Dai, F.: Approximation of smooth functions on compact two-point homogeneous spaces. J. Funct. Anal. 220(2), 401–423 (2005)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. 2(1), 151–173 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer, New York (2013)

    Book  Google Scholar 

  8. Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C.: The boundedness of classical operators in variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Dai, F.: Multivariate polynomial inequalities with respect to doubling weights and \(A_ \infty \) weights. J. Funct. Anal. 235(1), 137–170 (2006)

    Article  MathSciNet  Google Scholar 

  10. Dai, F., Tikhonov, S.: Weighted fractional Bernstein’s inequalities and their applications. J. Anal. Math. 129, 33–68 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dai, F., Gorbachev, D., Tikhonov, S.: Nikolskii inequality for lacunary spherical polynomials. Proc. Am. Math. Soc. 148(3), 1169–1174 (2020)

    Article  MathSciNet  Google Scholar 

  12. Dai, F., Han, F., Tikhonov, S.: Reverse Hölder’s inequality for spherical harmonics. Proc. Am. Math. Soc. 144(3), 1041–1051 (2016)

    Article  Google Scholar 

  13. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer Monographs in MathematicsSpringer Monographs in Mathematics, Springer, New York (2013)

    Book  Google Scholar 

  14. Diening, L.: Maximal function on generalized Lebesgue spaces \(L^{p(\cdot )}\). Math. Inequal. Appl. 7(2), 245–253 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503–522 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Diening, L., Harjulehto, P., Hästö, P., R\(\mathring{u}\)žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, Springer, Heidelberg (2011)

  17. Ditzian, Z.: Fractional derivatives and best approximation. Acta Math. Hungar. 81(4), 323–348 (1998)

    Article  MathSciNet  Google Scholar 

  18. Guliyev, V., Ghorbanalizadeh, A., Sawano, Y.: Approximation by trigonometric polynomials in variable exponent Morrey spaces. Anal. Math. Phys. 9(3), 1265–1285 (2019)

    Article  MathSciNet  Google Scholar 

  19. Kamzolov, A.: Approximation of functions on the sphere \(\mathbb{n}\). Serdica 10(1), 3–10 (1984)

    MathSciNet  MATH  Google Scholar 

  20. Kokilashvili, V., Meskhi, A.: On weighted Bernstein type inequality in grand variable exponent Lebesgue spaces. Math. Inequal. Appl. 18(3), 991–1002 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Kopaliani, T., Chelidze, G.: Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces. J. Math. Anal. Appl. 356(1), 232–236 (2009)

    Article  MathSciNet  Google Scholar 

  22. Kolmogorov, A.: On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval. Uchenye Zapiski Moskov. Gos. Univ. Matematika 30, 3–16 (1939)

    MathSciNet  Google Scholar 

  23. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslovak Math. J. 41(116), 592–618 (1991)

    Article  MathSciNet  Google Scholar 

  24. Mizuta, Y., Nakai, E., Sawano, Y., Shimomura, T.: Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo–Nirenberg inequality for Riesz potentials. J. Math. Soc. Jpn. 65(2), 633–670 (2013)

    Article  MathSciNet  Google Scholar 

  25. Mhaskar, H., Narcowich, F., Ward, J.: Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Math. Comp. 70(235), 1113–1130 (2001)

    Article  MathSciNet  Google Scholar 

  26. Narcowich, F., Petrushev, P., Ward, J.: Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal. 238(2), 530–564 (2006)

    Article  MathSciNet  Google Scholar 

  27. Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–211 (1931)

    Article  Google Scholar 

  28. R\(\mathring{u}\)žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, Springer-Verlag, Berlin (2000)

  29. Szegö, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  30. Yattselev, M.: A note on the sharpness of the Remez-type inequality for homogeneous polynomials on the sphere. Electron. Trans. Numer. Anal. 25, 278–283 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces. Nonlinear Anal. 69(10), 3629–3636 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by China Scholarship Council (Grant No. CSC201906315017) and the Fundamental Research Funds for the Central Universities (Grant No. 20720190062). The second author was supported by the National Natural Science Foundation of China (Project no. 11671271) and the Natural Science Foundation of Beijing Municipality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, H. Polynomial Inequalities in Lebesgue Spaces with Variable Exponents on the Sphere. J Geom Anal 32, 33 (2022). https://doi.org/10.1007/s12220-021-00786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00786-y

Keywords

Mathematics Subject Classification

Navigation