Skip to main content
Log in

Uniform \(l^2\)-Decoupling in \(\mathbb R^2\) for Polynomials

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

For each positive integer d, we prove a uniform \(l^2\)-decoupling inequality for the collection of all polynomials phases of degree at most d. Our result is intimately related to Biswas et al. (Proc Am Math Soc 148(5):1987–1997, 2020), but we use a different partition that is determined by the geometry of each individual phase function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas, C., Gilula, M., Li, L., Schwend, J., Xi, Y.: \(\ell ^2\) decoupling in \(\mathbb{R}^2\) for curves with vanishing curvature. Proc. Am. Math. Soc. 148(5), 1987–1997 (2020)

    Article  Google Scholar 

  2. Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Demeter, C.: A study guide for the \(l^2\) decoupling theorem. Chin. Ann. Math. Ser. B 38(1), 173–200 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J., Demeter, C.: Decouplings for curves and hypersurfaces with nonzero Gaussian curvature. J. Anal. Math. 133, 279–311 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. (2) 184(2), 633–682 (2016). https://doi.org/10.4007/annals.2016.184.2.7

    Article  MathSciNet  MATH  Google Scholar 

  6. Demeter, C.: Fourier Restriction, Decoupling, and Applications, Cambridge Studies in Advanced Mathematics, vol. 184, pp. xvi+331. Cambridge University Press, Cambridge (2020)

  7. Guo, S., Li, Z.K., Yung, P.-L., Zorin-Kranich, P.: A short proof of \(l^2\) decoupling for the moment curve, preprint (2019), arxiv:1912.09798

  8. Kemp, D.: Decouplings for surfaces of zero curvature, preprint (2019), arxiv:1908.07002

  9. Li, Z.K.: An \(l^2\) decoupling interpretation of efficient congruencing: the parabola, preprint (2018), arxiv:1805.10551

  10. Li, Z.K.: Decoupling for the Parabola and Connections to Efficient Congruencing, Thesis (Ph.D.)–University of California, Los Angeles, ProQuest LLC, Ann Arbor, MI (2019)

  11. Pierce, L.B.: The Vinogradov mean value theorem [after Wooley, and Bourgain, Demeter and Guth], Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–1135, Astérisque, (407), Exp. No. 1134, 479–564 (2019)

  12. Pramanik, M., Seeger, A.: \(L^p\) regularity of averages over curves and bounds for associated maximal operators. Am. J. Math. 129(1), 61–103 (2007). https://doi.org/10.1353/ajm.2007.0003

    Article  MATH  Google Scholar 

  13. Shadrin, A.: Twelve proofs of the Markov inequality. In: Dimitrov, D.K., Nikolov, G., Uluchev, R. (eds.) Approximation Theory: A Volume Dedicated to Borislav Bojanov, pp. 233–298. M. Drinov Acad. Publ. House, Sofia (2004)

  14. Stein, E.M., Wainger, S.: Oscillatory integrals related to Carleson’s theorem. Math. Res. Lett. 8(5–6), 789–800 (2001). https://doi.org/10.4310/MRL.2001.v8.n6.a9

    Article  MathSciNet  MATH  Google Scholar 

  15. Wolff, T.: Local smoothing type estimates on \(L^p\) for large \(p\). Geom. Funct. Anal. 10(5), 1237–1288 (2000). https://doi.org/10.1007/PL00001652

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I sincerely thank my advisor Malabika Pramanik for her kind guidance in the preparation of this paper. I also thank Zane Li for useful discussions, especially about the technical aspects of the world of decoupling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongou Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the appendix, we prove Proposition 2.1 of [1] in the special case when \(\nu \ge 0\).

Corollary 7.1

(Proposition 2.1 of [1]) Let \(\delta \in 2^{-2\mathbb {N}}\), \(d\in [3,\infty )\) and \(2\le p\le 6\). For each interval \(I\subseteq [0,1]\), let

$$\begin{aligned} E_I g(x,y)=\int _I g(s)e(xs+ys^d)ds. \end{aligned}$$

Let T be an axis-parallel rectangle with side lengths \(\delta ^{-1}\times \delta ^{-d/2}\) (in the x and y directions, respectively). Let \(\eta \) be a nonnegative Schwartz function such that \(|\eta |\ge 1\) on T and \(\widehat{\eta }\) is supported on the dual rectangle \(T^*\) which has side lengths \(\delta \times \delta ^{d/2}\).

Denote \(\Delta _k=[(k-1)\delta ^{1/2},k\delta ^{1/2}]\), \(1\le k\le \delta ^{-1/2}\). Then for any \(g\in L^1([0,1])\), we have

$$\begin{aligned} \Vert E_{[0,1]}g \Vert _{L^p(T)}\lesssim _\varepsilon \delta ^{-\varepsilon }\left( \sum _{k=1}^{\delta ^{-1/2}}\Vert E_{\Delta _{k}}g \Vert ^2_{L^p(\eta ^p)}\right) ^{\frac{1}{2}}, \end{aligned}$$

where the implicit constant depends on p and \(\varepsilon \) only.

Proof

Split the partition \({\mathcal {P}}:=\{\Delta _k:1\le k\le \delta ^{-1/2}\}\) into subpartitions \({\mathcal {P}}_n\), \(1\le n\le \log _2(\delta ^{-1/2})\), defined as

$$\begin{aligned} {\mathcal {P}}_n:=\{\Delta _k:2^{n-1}\le k< 2^n\}. \end{aligned}$$

Denote \(I_n\) as the union of intervals in \({\mathcal {P}}_n\). Since we can afford logarithmic losses, by triangle inequality and Cauchy–Schwarz it suffices to prove that for each n, we have

$$\begin{aligned} \Vert E_{I_n}g \Vert _{L^p(T)}\lesssim _\varepsilon \delta ^{-\varepsilon }\left( \sum _{\Delta _k\in {\mathcal {P}}_n}\Vert E_{\Delta _{k}}g \Vert ^2_{L^p(\eta ^p)}\right) ^{\frac{1}{2}}. \end{aligned}$$
(7.1)

Note that for each n, \({\mathcal {P}}_n\) is a sub-admissible partition of \(I_n\) for \(s^d\) at scale \(a_n:=2^{dn}\delta ^{d/2}\). Therefore, by Theorem 1.6 applied to the monomial \(s^d\in {\mathcal {D}}_{ d -2}\), for any \(f\in L^p(\mathbb {R}^2)\) with Fourier support in \({\mathcal {N}}^{s^d}_{I_n,Ca_n}\) (where \(C=C_d\) is an absolute constant), we have

$$\begin{aligned} \Vert f \Vert _{L^p(\mathbb {R}^2)}\lesssim _\varepsilon \delta ^{-\varepsilon }\left( \sum _{\Delta _k\in {\mathcal {P}}_n} \Vert f_{\Delta _k} \Vert ^2_{L^p(\mathbb {R}^2)}\right) ^{\frac{1}{2}}. \end{aligned}$$
(7.2)

The proof that (7.2) implies (7.1) is purely technical and routine. Such idea can be found in more detail in [9], but we include it here for completeness. The idea is to use a standard mollification technique that passes a global neighbourhood version of a decoupling inequality to its local extension version, with the choice of appropriate scales.

Let \(I'_n=\cup _{k=2^{n-1}+1}^{2^n-2}\Delta _k\) be the union of intervals in \({\mathcal {P}}_k\) excluding the first and the last one. By triangle inequality and Cauchy–Schwarz, it suffices to show

$$\begin{aligned} \Vert E_{I'_n}g \Vert _{L^p(T)}\lesssim _\varepsilon \delta ^{-\varepsilon }\left( \sum _{k=2^{n-1}}^{2^n-1}\Vert E_{\Delta _k}g \Vert ^2_{L^p(\eta ^p)}\right) ^{\frac{1}{2}}. \end{aligned}$$
(7.3)

On the left-hand side of (7.3), we have

$$\begin{aligned} \Vert E_{I'_n}g \Vert _{L^p(T)}\le \Vert \eta E_{I'_n}g \Vert _{L^p(\mathbb {R}^2)}. \end{aligned}$$

Observe that \(\widehat{E_{I'_n}g}*\widehat{\eta }\) is a smooth function supported on the Minkowski sum of \(\Gamma _n\) and \(T^*\) where \(\Gamma _n\) is the graph of \(s^d\) over \(I'_n\). Since each \(\Delta _k\) has length \(\delta ^{1/2}\) and \(T^*\) has length \(\delta \) in the horizontal direction, we see that \(\Gamma _n+T^*\) does not exceed [0, 1] in the horizontal axis. In addition, for each \(2^{n-1}\le k\le 2^n-1\), \(2^{n-2}\le k'\le 2^n-1\), we have \((\eta E_{\Delta _{k'}} g)_{\Delta _k}\ne 0\) only if \(k'=k-1\), k or \(k+1\).

In the vertical axis, for \((s,s^d)\in \Gamma _n\) and \((u,v)\in T^*\), we have

$$\begin{aligned} |s^d+v-(s+u)^d|&\le |v|+|u|\sum _{j=0}^{d-1}(s+u)^j s^{d-1-j}\\&\lesssim _d \delta ^{\frac{d}{2}}+\delta \cdot 2^{n(d-1)}\delta ^{\frac{d-1}{2}}\\&\lesssim _d 2^{dn}\delta ^{\frac{d}{2}}, \end{aligned}$$

since \(2^n\le \delta ^{-1/2}\) and for \(s\in I'_n\) we have \(2^{n-1}\delta ^{1/2}\le s\le 2^n \delta ^{1/2}\). Thus we have

$$\begin{aligned} \Gamma _n+T^*\subseteq {\mathcal {N}}^{s^3}_{I_n,Ca_n}. \end{aligned}$$

Thus, for \(2^{n-1}\le k\le 2^n-1\),

$$\begin{aligned} \Vert (\eta E_{I_n'}g)_{\Delta _k} \Vert _{L^p(\mathbb {R}^2)}&\le \Vert (\eta E_{\Delta _{k-1}}g)_{\Delta _k} \Vert _{L^p(\mathbb {R}^2)}+\Vert (\eta E_{\Delta _k}g)_{\Delta _k} \Vert _{L^p(\mathbb {R}^2)}+\Vert (\eta E_{\Delta _{k+1}}g)_{\Delta _k} \Vert _{L^p(\mathbb {R}^2)}\\&\lesssim \Vert \eta E_{\Delta _{k-1}}g \Vert _{L^p(\mathbb {R}^2)}+\Vert \eta E_{\Delta _k}g \Vert _{L^p(\mathbb {R}^2)}+\Vert \eta E_{\Delta _{k+1}}g \Vert _{L^p(\mathbb {R}^2)}, \end{aligned}$$

since the Fourier multiplier \((s,t)\mapsto 1_I(s)\) for any interval I has \(L^p(\mathbb {R}^2)\rightarrow L^p(\mathbb {R}^2)\) operator norm bounded by an absolute constant, whenever \(1<p<\infty \).

Thus, by (7.2) with \(f=\eta E_{I'_n}g\),

$$\begin{aligned} \Vert \eta E_{I'_n}g \Vert _{L^p(\mathbb {R}^2)}&\lesssim _\varepsilon \delta ^{-\varepsilon }\left( \sum _{k=2^{n-1}}^{2^n-1}\Vert (\eta E_{I'_n}g)_{\Delta _k} \Vert ^2_{L^p(\mathbb {R}^2)}\right) ^{\frac{1}{2}}\\&\lesssim \delta ^{-\varepsilon }\left( \sum _{k=2^{n-1}}^{2^n-1}\left( \Vert \eta E_{\Delta _{k-1}}g \Vert _{L^p(\mathbb {R}^2)}+\Vert \eta E_{\Delta _k}g \Vert _{L^p(\mathbb {R}^2)}+\Vert \eta E_{\Delta _{k+1}}g \Vert _{L^p(\mathbb {R}^2)}\right) ^2\right) ^{\frac{1}{2}}\\&\lesssim \delta ^{-\varepsilon }\left( \sum _{k=2^{n-1}}^{2^n-1}\Vert \eta E_{\Delta _k}g \Vert ^2_{L^p(\mathbb {R}^2)}\right) ^{\frac{1}{2}}, \end{aligned}$$

where in the last line we have used Cauchy–Schwarz. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T. Uniform \(l^2\)-Decoupling in \(\mathbb R^2\) for Polynomials. J Geom Anal 31, 10846–10867 (2021). https://doi.org/10.1007/s12220-021-00666-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00666-5

Keywords

Mathematics Subject Classification

Navigation