Skip to main content
Log in

Kissing Numbers and the Centered Maximal Operator

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove that in a metric measure space X, if for some \(p \in (1,\infty )\) there are uniform bounds (independent of the measure) for the weak type (pp) of the centered maximal operator, then X satisfies a certain geometric condition, the Besicovitch intersection property, which in turn implies the uniform weak type (1, 1) of the centered operator. Thus, the following characterization is obtained: the centered maximal operator satisfies uniform weak type (1, 1) bounds if and only if the space X has the Besicovitch intersection property. In \(\mathbb {R}^d\) with any norm, the constants coming from the Besicovitch intersection property are bounded above by the translative kissing numbers. The extensive literature on kissing numbers allows us to obtain, first, sharp estimates on the uniform bounds satisfied by the centered maximal operators defined by arbitrary norms on the plane, second, sharp estimates in every dimension when the \(\ell _\infty \) norm is used, and third, improved estimates in all dimensions when considering euclidean balls, as well as the sharp constant in dimension 3. Additionally, we prove that the existence of uniform \(L^1\) bounds for the averaging operators associated with arbitrary measures and radii, is equivalent to a weaker variant of the Besicovitch intersection property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J. M. The weak type \((1,1)\) bounds for the maximal function associated to cubes grow to infinity with the dimension, Ann. of Math. (2) 173 (2011), no. 2, 1013–1023

  2. Aldaz, J.M.: Dimension dependency of the weak type \((1,1)\) bounds for maximal functions associated to finite radial measures. Bull. Lond. Math. Soc. 39, 203–208 (2007)

    Article  MathSciNet  Google Scholar 

  3. Aldaz, J.M.: Boundedness of averaging operators on geometrically doubling metric spaces. Ann. Acad. Sci. Fenn. Math. 44(1), 497–503 (2019)

    Article  MathSciNet  Google Scholar 

  4. Aldaz, J.M.: Local comparability of measures, averaging and maximal averaging operators. Potential Anal. 49(2), 309–330 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bachoc, Christine: Vallentin, Frank New upper bounds for kissing numbers from semidefinite programming. J. Amer. Math. Soc. 21(3), 909–924 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J.: On high-dimensional maximal functions associated to convex bodies. Amer. J. Math. 108(6), 1467–1476 (1986)

    Article  MathSciNet  Google Scholar 

  7. Bourgain, J.: On the Hardy-Littlewood maximal function for the cube. Israel J. Math. 203(1), 275–293 (2014)

    Article  MathSciNet  Google Scholar 

  8. Capri, O.N., Fava, N.A.: Strong differentiability with respect to product measures. Studia Math. 78(2), 173–178 (1984)

    Article  MathSciNet  Google Scholar 

  9. Conway, J. H.; Sloane, N. J. A. Sphere packings, lattices and groups. Grundlehren der Mathematischen Wissenschaften, 290. Springer-Verlag, New York, 1999

  10. L. Deleaval, O. Guédon, B. Maurey, Dimension free bounds for the Hardy–Littlewood maximal operator associated to convex sets. Ann. Fac. Sci. Toulouse Math. (6) 27 (2018), no. 1, 1–198

  11. Füredi, Zoltán; Loeb, Peter A. On the best constant for the Besicovitch covering theorem. Proc. Amer. Math. Soc. 121 (1994), no. 4, 1063–1073

  12. L. Grafakos, Classical Fourier analysis. Third edition. Graduate Texts in Mathematics, 249. Springer, New York, (2014)

  13. Heinonen, Juha Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001

  14. J. Heinonen, P. Koskela, N. Shanmugalingam, J. T Tyson, Sobolev spaces on metric measure spaces. An approach based on upper gradients. New Mathematical Monographs, 27. Cambridge University Press, Cambridge, 2015

  15. Ionescu, Alexandru D. An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators. Ann. of Math. (2) 152 (2000), no. 1, 259–275

  16. Jenssen, Matthew, Joos, Felix: Perkins, Will On kissing numbers and spherical codes in high dimensions. Adv. Math. 335, 307–321 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kabatjanskiĭ, G.A., Levenšteĭn, V.I.: Bounds for packings on the sphere and in space. Problemy Peredači Informatsii 14, 3–25 (1978)

    MathSciNet  Google Scholar 

  18. Korányi, A., Reimann, H.M.: Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111(1), 1–87 (1995)

    Article  MathSciNet  Google Scholar 

  19. Donne, Le.: Enrico; Rigot, Séverine Besicovitch Covering Property on graded groups and applications to measure differentiation. J. Reine Angew. Math. 750, 241–297 (2019)

    Article  MathSciNet  Google Scholar 

  20. Li, Hong-Quan Les fonctions maximales de Hardy-Littlewood pour des mesures sur les variétés cuspidales. J. Math. Pures Appl. (9) 88 (2007), no. 3, 261–275

  21. Li, Hong-Quan.: Qian, Bin Centered Hardy-Littlewood maximal functions on Heisenberg type groups. Trans. Amer. Math. Soc. 366(3), 1497–1524 (2014)

    Article  MathSciNet  Google Scholar 

  22. Maligranda, Lech Some remarks on the triangle inequality for norms. Banach J. Math. Anal. 2 (2008), no. 2, 31–41

  23. Martini, Horst; Swanepoel, Konrad J. Low-degree minimal spanning trees in normed spaces. Appl. Math. Lett. 19 (2006), no. 2, 122–125

  24. Melas, A. D. The best constant for the centered Hardy-Littlewood maximal inequality. Ann. of Math. (2) 157 (2003), no. 2, 647–688

  25. Musin, Oleg R. The kissing number in four dimensions. Ann. of Math. (2) 168 (2008), no. 1, 1–32

  26. Naor, Assaf: Tao, Terence Random martingales and localization of maximal inequalities. J. Funct. Anal. 259(3), 731–779 (2010)

    Article  MathSciNet  Google Scholar 

  27. Preiss, D. Dimension., of metrics and differentiation of measures, General topology and its relations to modern analysis and algebra, V (Prague, : Sigma Ser. Pure Math., vol. 3. Heldermann, Berlin 1983, 565–568 (1981)

  28. Rankin, R.A.: The closest packing of spherical caps in n dimensions. Proc. Glasgow Math. Assoc. 2, 139–144 (1955)

    Article  MathSciNet  Google Scholar 

  29. Robins, G., Salowe, J.S.: Low-degree minimum spanning trees. Discrete Comput. Geom. 14(2), 151–165 (1995)

    Article  MathSciNet  Google Scholar 

  30. Sawyer, E., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math. 114(4), 813–874 (1992)

    Article  MathSciNet  Google Scholar 

  31. Sjögren, P.: A remark on the maximal function for measures in \(\mathbb{R}^n\). Amer. J. of Math. 105, 1231–1233 (1983)

    Article  MathSciNet  Google Scholar 

  32. Stein, E. M. The development of square functions in the work of A. Zygmund. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 359–376

  33. Strömberg, Jan-Olov Weak type \(L^1\) estimates for maximal functions on noncompact symmetric spaces. Ann. of Math. (2) 114 (1981), no. 1, 115–126

  34. Sullivan, John M. Sphere packings give an explicit bound for the Besicovitch covering theorem. J. Geom. Anal. 4 (1994), no. 2, 219–231

  35. Swanepoel, K.J.: Combinatorial Distance Geometry in Normed Spaces. New Trends. In: Geometry, Intuitive (ed.) Gergely Ambrus. Imre Bárány; Károly J Böröczky; Gábor Fejes Tóth; János Pach; Springer, Berlin (2018)

    Google Scholar 

  36. Swanepoel, K.J.: New lower bounds for the Hadwiger numbers of \(\ell _p\) balls for \(p < 2\). Appl. Math. Lett. 12(5), 57–60 (1999)

    Article  MathSciNet  Google Scholar 

  37. Talata, István On Hadwiger numbers of direct products of convex bodies. Combinatorial and computational geometry, 517–528, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Aldaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by Grant PID2019-106870GB-I00 of the MICINN of Spain, and also by ICMAT Severo Ochoa project CEX2019-000904-S (MICINN)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldaz, J.M. Kissing Numbers and the Centered Maximal Operator. J Geom Anal 31, 10194–10214 (2021). https://doi.org/10.1007/s12220-021-00640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00640-1

Navigation