Skip to main content
Log in

On the Mean Convexity of a Space-and-Time Neighborhood of Generic Singularities Formed by Mean Curvature flow

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider a nondegenerate case of generic singularity when the limit cylinder of the rescaled mean curvature flow is \({\mathbb {R}}^3 \times {\mathbb {S}}^1\). We obtain a detailed description of a possibly small, but fixed, neighborhood of the singularity, up to (and including) the blowup time, and find that it is mean convex and the singularity is isolated. In the considered nondegenerate cases, we confirm the conjectures of mean convexity and isolation of singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschuler, S., Angenent, S.B., Giga, Y.: Mean curvature flow through singularities for surfaces of rotation. J. Geom. Anal. 5(3), 293–358 (1995)

    Article  MathSciNet  Google Scholar 

  2. Angenent, S., Daskalopoulos, P., Sesum, N.: unique asymptotics of ancient convex mean curvature flow solutions. arXiv:1503.01178

  3. Angenent, S., Daskalopoulos, P., Sesum, N.: Uniqueness of two-convex closed ancient solutions to the mean curvature flow. arXiv:1804.07230

  4. Brakk, K.A.: The Motion of a Surface by Its Mean Curvature, Volume 20 of Mathematical Notes. Princeton University Press, Princeton (1978)

    Google Scholar 

  5. Brendle, S., Huisken, G.: Mean curvature flow with surgery of mean convex surfaces in \({\mathbb{R}}^3\). Invent. Math. 203(2), 615–654 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bricmont, J., Kupiainen, A.: Universality in blow-up for nonlinear heat equations. Nonlinearity 7(2), 539–575 (1994)

    Article  MathSciNet  Google Scholar 

  7. Choi, K., Haslhofer, R., Hershkovits, O.: Ancient low entropy flows, mean convex neighborhoods, and uniqueness, arxiv e-prints (2018). arXiv preprint arXiv:1810.08467

  8. Choi, K., Haslhofer, R., Hershkovits, O., White, B.: Ancient asymptotically cylindrical flows and applications (2019)

  9. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I: generic singularities. Ann. Math. (2) 175(2), 755–833 (2012)

    Article  MathSciNet  Google Scholar 

  10. Colding, T.H., Minicozzi II, W.P.: Uniqueness of blowups and łojasiewicz inequalities. Ann. Math. (2) 182(1), 221–285 (2015)

    Article  MathSciNet  Google Scholar 

  11. Colding, T.H., Ilmanen, T., Minicozzi II, W.P.: Rigidity of generic singularities of mean curvature flow. Publ. Math. Inst. Hautes Études Sci. 121, 363–382 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dejak, S., Gang, Z., Sigal, I.M., Wang, S.: Blow-up in nonlinear heat equations. Adv. Appl. Math. 40(4), 433–481 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ecker, K.: Regularity theory for mean curvature flow. In: Progress in Nonlinear Differential Equations and their Applications, 57. Birkhäuser Boston, Inc., Boston (2004)

  14. Egli, D., Gang, Z., Kong, W., Sigal, I.M.: On blowup in nonlinear heat equations. arXiv:1111.7208

  15. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differ. Geom. 33(3), 635–681 (1991)

    Article  MathSciNet  Google Scholar 

  16. Filippas, S., Kohn, R.V.: Refined asymptotics for the blowup of \(u_t-\Delta u=u^p\). Commun. Pure Appl. Math. 45(7), 821–869 (1992)

    Article  Google Scholar 

  17. Filippas, S., Liu, W.X.: On the blowup of multidimensional semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(3), 313–344 (1993)

    Article  MathSciNet  Google Scholar 

  18. Gang, Z.: On the dynamics of formation of generic singularities of mean curvature flow. arXiv:1708.03484

  19. Gang, Z., Knopf, D.: Universality in mean curvature flow neckpinches. Duke Math. J. 164(12), 2341–2406 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gang, Z., Sigal, I.M.: Relaxation of solitons in nonlinear Schrödinger equations with potential. Adv. Math. 216(2), 443–490 (2007)

    Article  MathSciNet  Google Scholar 

  21. Gang, Z., Sigal, I.M.: Neck pinching dynamics under mean curvature flow. J. Geom. Anal. 19(1), 36–80 (2009)

    Article  MathSciNet  Google Scholar 

  22. Gang, Z., Knopf, D., Sigal, I.M.: Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow. to appear in Memoirs of American Mathematical Society

  23. Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)

    Article  MathSciNet  Google Scholar 

  24. Giga, Y., Kohn, R.V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36(1), 1–40 (1987)

    Article  MathSciNet  Google Scholar 

  25. Giga, Y., Kohn, R.V.: Nondegeneracy of blowup for semilinear heat equations. Commun. Pure Appl. Math. 42(6), 845–884 (1989)

    Article  MathSciNet  Google Scholar 

  26. Hamilton, R.S.: Four-manifolds with positive isotropic curvature. Commun. Anal. Geom. 5(1), 1–92 (1997)

    Article  MathSciNet  Google Scholar 

  27. Haslhofer, R., Kleiner, B.: Mean curvature flow of mean convex hypersurfaces. Commun. Pure Appl. Math. 70(3), 511–546 (2017)

    Article  MathSciNet  Google Scholar 

  28. Haslhofer, R., Kleiner, B.: Mean curvature flow with surgery. Duke Math. J. 166(9), 1591–1626 (2017)

    Article  MathSciNet  Google Scholar 

  29. Herrero, M.A., Velázquez, J.J.L.: Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(2), 131–189 (1993)

    Article  MathSciNet  Google Scholar 

  30. Huisken, G., Sinestrari, C.: Mean curvature flow with surgeries of two-convex hypersurfaces. Invent. Math. 175(1), 137–221 (2009)

    Article  MathSciNet  Google Scholar 

  31. Ilmanen, T.: Elliptic regularization and partial regularity for motion by mean curvature. Mem. Am. Math. Soc. 108(520), x+90 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Merle, F., Zaag, H.: Stability of the blow-up profile for equations of the type \(u_t=\Delta u+\vert u\vert ^{p-1}u\). Duke Math. J. 86(1), 143–195 (1997)

    Article  MathSciNet  Google Scholar 

  33. Sesum, N.: Rate of convergence of the mean curvature flow. Commun. Pure Appl. Math. 61(4), 464–485 (2008)

    Article  MathSciNet  Google Scholar 

  34. White, B.: A local regularity theorem for mean curvature flow. Ann. Math. (2) 161(3), 1487–1519 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Shengwen Wang for pointing out that the proved estimates imply mean convexity, and their importance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Gang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Gang: partly supported by NSF Grant DMS-1443225 and DMS-1801387.

Proof of (4.26)

Proof of (4.26)

The proof of (4.26) is easier than controlling \(\Big \Vert (100+|y|)^{-3+|k|} \Vert P_{\theta ,\ge 2} \partial _{\theta }^{3-|k|}\nabla _{y}^{k}\chi _{Y}v\Vert _{L_{\theta }^2}\Big \Vert _{\infty }\), \(|k|=0,1,2,\) in the previous sections because the wanted decay rate is significantly slower, and hence is easier to obtain. Thus here we only sketch the proof.

We start with recalling some relevant results from [18]. We proved that, if \( \tau _0\) is sufficiently large, then for \(\tau \ge \tau _0\), v can be decomposed as

$$\begin{aligned} \begin{aligned}&v(y,\ \theta ,\tau )=V_{a(\tau ), B(\tau )}(y)+\Omega _1(\tau )\cdot y+\Omega _2(\tau )\cdot y \cos \theta + \Omega _3(\tau )\cdot y \sin \theta \\&\quad +\alpha _1(\tau ) \cos \theta +\alpha _2(\tau ) \sin \theta +w(y,\ \theta ,\tau ), \end{aligned} \end{aligned}$$
(A.1)

such that \(\chi _{R}w\) is orthogonal to the same 18 functions listed in (3.12). Recall the definition of R from (3.6).

We take the following results from [18]:

Proposition A.1

There exists a small constant \(\delta \) and a large time \(\tau _1\) such that when \(|y|\le (1+\epsilon )R(\tau )\), and \(\tau \ge \tau _1\), and for \( |k|+l=1,\ldots ,4\),

$$\begin{aligned} \left| v(\cdot ,\tau )-\sqrt{2}\right| ,\ |\nabla _{y}^{k}\partial _{\theta }^{l} v(\cdot ,\tau )|\le \delta . \end{aligned}$$
(A.2)

The scalar functions a, \(\alpha _l\), \(l=1,2,\) the three-dimensional-vector-valued functions \(\Omega _k,\) \(k=1,2,3,\) and the \(3\times 3\)-symmetric-matrix-valued function B satisfy the estimates in (3.13)–(3.15), and for the function w there exists a constant C such that,

$$\begin{aligned} \begin{aligned} \Vert \langle y\rangle ^{-3}\chi _{R}w(\cdot ,\tau )\Vert _{\infty }\le&C \kappa (\epsilon )R^{-4}(\tau ),\\ \Vert \langle y\rangle ^{-2}\nabla _{y}^{m}\partial _{\theta }^{n}\chi _{R}w(\cdot ,\tau )\Vert _{\infty }\le&C \kappa (\epsilon )R^{-3}(\tau ),\ |m|+n=1,\\ \Vert \langle y\rangle ^{-1}\nabla _{y}^{m}\partial _{\theta }^{n}\chi _{R}w(\cdot ,\tau )\Vert _{\infty }\le&C \kappa (\epsilon )R^{-2}(\tau ),\ |m|+n=2. \end{aligned} \end{aligned}$$
(A.3)

Now we prepare for proving (4.26) by making the technique of maximum principle applicable. Recall that the equation for \(\chi _{R}w,\) derived in [18], is,

$$\begin{aligned} \partial _{\tau }\chi _{R}w=&-L \ \chi _{Y}w +\chi _{R}\left[ F+G+N_1(v)+N_2(\eta )\right] +\mu _{R}(w), \end{aligned}$$
(A.4)

where the operator L is defined as

$$\begin{aligned} L:=-\Delta _{y}+\frac{1}{2}y\cdot \nabla _{y}-\frac{1}{2}-V_{a,B}^{-2}, \end{aligned}$$
(A.5)

the functions F, G, \(N_1\), and \(N_2\) are defined in (4.1), and \(\mu _{R}(w)\) is defined as

$$\begin{aligned} \mu _{R}(w):=\frac{1}{2}\left( y\cdot \nabla _{y}\chi _{R}\right) w+\left( \partial _{\tau }\chi _{R}\right) w-\left( \Delta _{y}\chi _{R}\right) w-2\nabla _{y}\chi _{R}\cdot \nabla _{y}w. \end{aligned}$$

Impose the operator \(P_{\theta ,\ge 2}\) on both sides of (A.4) and use that \(P_{\theta ,\ge 2}(F+G)=0\) to find

$$\begin{aligned} \partial _{\tau }(P_{\theta ,\ge 2}\chi _{R}w)=&-L(P_{\theta ,\ge 2}\chi _{Y}w) +P_{\theta ,\ge 2}\left[ N_1(\eta )\chi _{R}+N_2(v)\chi _{R}+\mu _{R}(w)\right] . \end{aligned}$$
(A.6)

To facilitate later discussion we define a function \({\tilde{\Phi }}_3\):

$$\begin{aligned} {{\tilde{\Phi }}}_3(y,\tau ):=(100+|y|^2)^{-3}\Vert P_{\theta ,\ge 2}\partial _{\theta }^3 \chi _{R}w(y,\cdot ,\tau )\Vert _{L^{2}_{\theta }}^2. \end{aligned}$$

We derive a governing equation for it from (A.6),

$$\begin{aligned} \begin{aligned} \partial _{\tau }{{\tilde{\Phi }}}_3=&-(L_3+W_3){{\tilde{\Phi }}}_3-2 (100+|y|^2)^{-3}\left[ V_{a,B}^{-2}\Vert P_{\theta ,\ge 2}\partial _{\theta }^4 \chi _{R}w\Vert _{L^{2}_{\theta }}^2+\Vert P_{\theta ,\ge 2}\partial _{\theta }^3\nabla _{y} \chi _{R}w\Vert _{L^{2}_{\theta }}^2\right] \\&+2(100+|y|^2)^{-3}D. \end{aligned} \end{aligned}$$
(A.7)

Here \(L_3\) is a differential operator, and \(W_3\) is a multiplier, defined as

$$\begin{aligned} \begin{aligned} L_3:=&-\Delta +\frac{1}{2}y\cdot \nabla _{y}-2(100+|y|^2)^{-3} \left( \nabla _y (100+|y|^2)^{3}\right) \cdot \nabla _{y},\\ W_3:=&-1+\frac{3|y|^2}{100+|y|^2}-\frac{18}{100+|y|^2}-\frac{24|y|^2}{(100+|y|^2)^2}-2V_{a,B}^{-2}, \end{aligned} \end{aligned}$$
(A.8)

and the term D is defined as

$$\begin{aligned} D:=&\Big \langle P_{\theta ,\ge 2}\partial _{\theta }^3 \chi _{R}w, \ \partial _{\theta }^{3}\left( \chi _{R}\left( N_{1}(v)+N_{2}(\eta )\right) +\mu _{R}(w)\right) \Big \rangle _{\theta }. \end{aligned}$$

We claim that D satisfies the estimate, when \(\tau \) is sufficiently large,

$$\begin{aligned} \begin{aligned} (100+|y|^2)^{-3} D&\le \frac{1}{50}(100+|y|^2)^{-3}\left[ \Vert P_{\theta ,\ge 2}\partial _{\theta }^4 \chi _{R}w\Vert _{L^{2}_{\theta }}^2+\Vert P_{\theta ,\ge 2}\partial _{\theta }^3\nabla _{y} \chi _{R}w\Vert _{L^{2}_{\theta }}^2\right] \\&\quad +C\delta ^2\kappa ^2(\epsilon )R^{-8}. \end{aligned} \end{aligned}$$
(A.9)

Suppose the claim holds, then we put it back to (A.7) and observe some obvious cancellations. This, together with the facts \(\Vert P_{\theta ,\ge 2}\partial _{\theta }^4 \chi _{R}w\Vert _{L^{2}_{\theta }}^2\ge 4 \Vert P_{\theta ,\ge 2}\partial _{\theta }^3 \chi _{R}w\Vert _{L^{2}_{\theta }}^2\) and that \(V_{a,B}^{-2}=\frac{1}{2}+{\mathcal {O}}(\tau ^{-\frac{1}{2}})\) if \(|y|\le (1+\epsilon )R\), implies that, for some \(C>0,\)

$$\begin{aligned} \partial _{\tau }{{\tilde{\Phi }}}_3\le -(L_3+\frac{1}{2}){{\tilde{\Phi }}}_3+C \delta ^2 \kappa ^2(\epsilon ) R^{-8}. \end{aligned}$$
(A.10)

Before applying the maximum principle we need to check the boundary conditions. The cutoff function \(\chi _{R}\) in the definition of \({{\tilde{\Phi }}}_3\) makes \({{\tilde{\Phi }}}_3(y,\tau )=0\) when \(|y|\ge (1+\epsilon )R(\tau )\).

Apply the maximum principle to have that, for some \(C_1>0,\)

$$\begin{aligned} {\tilde{\Phi }}_3(\tau )\le e^{-\frac{1}{2}(\tau -\tau _1)}{{\tilde{\Phi }}}_3(\tau _1)+C_1 \delta ^2 \kappa ^2(\epsilon ) R^{-8}. \end{aligned}$$
(A.11)

This, together with \({{\tilde{\Phi }}}_3(\tau _1)\le \delta \) if \(\tau \ge \tau _0\) implied by (A.2), implies the desired estimate, provided that \(\tau \) is sufficiently large.

To complete the proof we need to prove the claim (A.9).

1.1 Proof of (A.9)

We decompose D into two terms

$$\begin{aligned} D:= D_{1}+D_{2}, \end{aligned}$$
(A.12)

where \(D_{1}\) is defined as

$$\begin{aligned} D_{1}:= \langle P_{\theta ,\ge 2}\partial _{\theta }^3 \chi _{R}w, \ \partial _{\theta }^{3} \chi _{R}\left( N_{1}+N_{2}\right) \rangle _{\theta }=-\langle P_{\theta ,\ge 2}\partial _{\theta }^4 \chi _{R}w, \ \chi _{R} \partial _{\theta }^{2} \left( N_{1}+N_{2}\right) \rangle _{\theta }, \end{aligned}$$

here we integrate by parts in \(\theta \) in the second step, and \(D_2\) is defined as

$$\begin{aligned} D_2:=\langle P_{\theta ,\ge 2}\partial _{\theta }^3 \chi _{R}w, \ \mu _{R}(\partial _{\theta }^{3}w)\rangle _{\theta }. \end{aligned}$$

For \(D_1\) we compute directly, use (A.2) and \(\partial _{\theta }v=\partial _{\theta }\eta \) to obtain

$$\begin{aligned} \chi _{R}|\partial _{\theta }^{2}N_{1}|\lesssim&\delta \chi _{R}\sum _{0\le l\le 2} \left[ |\partial _{\theta }^{l}\nabla _{y}\eta |^2+|\partial _{\theta }^{l+1}\eta |\right] , \end{aligned}$$
(A.13)
$$\begin{aligned} \chi _{R}\Vert \partial _{\theta }^2 N_2\Vert _{L_{\theta }^2}\lesssim&\delta \chi _{R}\sum _{l=1,2,3,4}\Vert \partial _{\theta }^l \eta \Vert _{L_{\theta }^2}. \end{aligned}$$
(A.14)

Next we estimate the terms on the right-hand side.

For the first term on the right-hand side of (A.13), we decompose \(\eta \) as in (4.4), use (A.2), and change the order of \(\nabla _y\) and \(\chi _R\) to find

$$\begin{aligned} \chi _{R} |\partial _{\theta }^{l}\nabla _y \eta |^2\lesssim (1+|y|)^2 \tau ^{-1}+\sum _{m=\pm 1}|\nabla _{y}\chi _{R}w_{m}||\nabla _{y}w_{m}|+\delta |\nabla _{y}\chi _{R}|+\delta |\partial _{\theta }^{l}\nabla _{y}P_{\theta ,\ge 2}\chi _{R}w|. \end{aligned}$$
(A.15)

For the second term on the right-hand side we have

$$\begin{aligned} \begin{aligned}&(100+|y|^2)^{-\frac{3}{2 }}\sum _{m=\pm 1}\left\| (\nabla _{y}\chi _{R}w_{m})(\nabla _{y}w_{m})\right\| _{L_{\theta }^2}\\&\quad \lesssim \Vert \langle y\rangle ^{-2}\nabla _{y}\chi _{R}w_{m}\Vert _{\infty }\left[ \Vert \langle y\rangle ^{-1}\nabla _y \chi _{R}w_{m}\Vert _{\infty }+\Vert 1_{\le (1+\epsilon )R}\langle y\rangle ^{-1}\nabla _y(1-\chi _{R}) w_{m}\Vert _{\infty }\right] \\&\quad \lesssim \Vert \langle y\rangle ^{-2}\nabla _{y}\chi _{R}w\Vert _{\infty }\left[ R^2 \Vert \langle y\rangle ^{-3}\nabla _y \chi _{R}w\Vert _{\infty }+\Vert 1_{\le (1+\epsilon )R}\langle y\rangle ^{-1}\nabla _y(1-\chi _{R}) w\Vert _{\infty }\right] \\&\quad \lesssim \kappa (\epsilon ) R^{-4}\left( \kappa (\epsilon )R^{-1}+\delta \right) , \end{aligned} \end{aligned}$$
(A.16)

where in the second step, to control \(\nabla _y w\) we inserted \(1=\chi _{R}+(1-\chi _{R})\) before w, and applied the estimates in (A.3) in the last step; we also used that the function \(\nabla _y(1-\chi _{R}) w\) is supported by the set \(\{y\ |\ |y|\ge R\}\) to obtain \(\langle y\rangle ^{-1}\lesssim R^{-1}\). For the third term, the function \(|\nabla _{y}\chi _{R}|=R^{-1}\left| \chi ^{'}\left( \frac{|y|}{R}\right) \right| \) is supported by the set \(\{ y\ \big | \ |y|\ge R\},\) thus,

$$\begin{aligned} \langle y\rangle ^{-3}|\nabla _{y}\chi _{R}|\lesssim \kappa (\epsilon )R^{-4}. \end{aligned}$$
(A.17)

Return to (A.15), the estimates above and that \(\Vert \partial _{\theta }f\Vert _{L_{\theta }^2}\le \Vert \partial _{\theta }^2f\Vert _{L_{\theta }^2}\) for any smooth periodic function f imply

$$\begin{aligned} (100+|y|^2)^{-\frac{3}{2 }}\chi _{R}\Big \Vert |\partial _{\theta }^{l}\nabla _y \eta |^2\Big \Vert _{L_{\theta }^2}\lesssim \delta (100+|y|^2)^{-\frac{3}{2}} \Vert \nabla _{y}\partial _{\theta }^3 P_{\theta ,\ge 2} \chi _{R}w\Vert _{L_{\theta }^2}+\delta \kappa (\epsilon )R^{-4}. \end{aligned}$$
(A.18)

The second term on the right-hand side of (A.13) can be controlled more easily since \(\chi _{Y}\) and \(\partial _{\theta }\) commute, thus we just state the result, but skip the proof,

$$\begin{aligned} (100+|y|^2)^{-\frac{3}{2 }}\chi _{R}\left\| |\partial _{\theta }^{l+1} \eta |^2\right\| _{L_{\theta }^2} \lesssim \delta (100+|y|^2)^{-\frac{3}{2}} \Vert \partial _{\theta }^4\chi _{R}P_{\theta ,\ge 2} w\Vert _{L_{\theta }^2}+\delta \kappa (\epsilon )R^{-4}. \end{aligned}$$
(A.19)

To complete our treatment of (A.13), we use (A.18) and (A.19) to obtain

$$\begin{aligned} \begin{aligned}&(100+|y|^2)^{-\frac{3}{2}}\chi _{R}\Vert \partial _{\theta }^{2}\chi _{R}N_{1}(v)\Vert _{L_{\theta }^2}\\&\quad \lesssim \delta (100+|y|^2)^{-\frac{3}{2}}\left[ \Vert \nabla _{y}\partial _{\theta }^3 P_{\theta ,\ge 2} \chi _{R}w\Vert _{L_{\theta }^2}+ \Vert \partial _{\theta }^4\chi _{R}P_{\theta ,\ge 2} w\Vert _{L_{\theta }^2}\right] +\delta \kappa (\epsilon )R^{-4}. \end{aligned} \end{aligned}$$
(A.20)

Apply similar techniques on (A.14) to find that,

$$\begin{aligned}&(100+|y|^2)^{-\frac{3}{2}}\chi _{R}\Vert \partial _{\theta }^{2}\chi _{R}N_{2}\Vert _{L_{\theta }^2} \lesssim \delta (100+|y|^2)^{-\frac{3}{2}} \Vert \partial _{\theta }^4\chi _{R}P_{\theta ,\ge 2} w\Vert _{L_{\theta }^2}+\delta \kappa (\epsilon )R^{-4}. \end{aligned}$$
(A.21)

Return to the definition of \(D_1\) in (A.12). The preliminary estimates in (A.13) and (A.14), the estimates (A.20), (A.21), and Young’s inequality imply that, for some \(C>0,\)

$$\begin{aligned} \begin{aligned}&(100+|y|^2)^{-3}|D_{1}|\\&\quad \le \frac{1}{100}(100+|y|^2)^{-3}\left[ \Vert P_{\theta ,\ge 2}\partial _{\theta }^4 \chi _{R}w\Vert _{L^{2}_{\theta }}^2+ \Vert P_{\theta ,\ge 2}\partial _{\theta }^{3}\chi _{R}N_{2}(\eta )\Vert _{L^{2}_{\theta }}^2\right] +C\delta ^2 \kappa ^2 (\epsilon )R^{-8}. \end{aligned} \end{aligned}$$
(A.22)

For \(D_{2}\), the term \(\frac{1}{2}(y\nabla _{y}\chi _{R})\) in the definition of \(\mu _{R}(\partial _{\theta }^3P_{\theta ,\ge 2} w)\) is of order \({\mathcal {O}}(1)\), but has a favorable nonpositive sign. This makes

$$\begin{aligned} D_{2}\le \left\langle P_{\theta ,\ge 2}\partial _{\theta }^3 \chi _{R}w, \ P_{\theta ,\ge 2}\partial _{\theta }^3\left( \big (\partial _{\tau }\chi _{R}\big )w-\left( \Delta _{y}\chi _{R}\right) w-2\nabla _{y}\chi _{R}\cdot \nabla _{y} w\right) \right\rangle _{\theta }. \end{aligned}$$
(A.23)

Its decay rate is generated by the derivatives of \(\chi _{R}\) and that they are supported by the set \(\left\{ y \big | \ |y|\ge R\right\} \), similar to (A.17) above. These together with (A.2) and Young’s inequality imply, for some \(C>0,\)

$$\begin{aligned} (100+|y|^2)^{-3} D_{2}\le \frac{1}{100} {{\tilde{\Phi }}}_3+C\delta ^2 \kappa ^2 (\epsilon )R^{-8}. \end{aligned}$$
(A.24)

Take the estimates in (A.22), (A.24) to (A.12), and obtain the desired estimate (A.9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gang, Z. On the Mean Convexity of a Space-and-Time Neighborhood of Generic Singularities Formed by Mean Curvature flow. J Geom Anal 31, 9819–9890 (2021). https://doi.org/10.1007/s12220-021-00629-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00629-w

Keywords

Mathematics Subject Classification

Navigation