Skip to main content
Log in

On the Curvature Energy of Cartesian Surfaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We analyze the lower semicontinuous envelope of the curvature functional of Cartesian surfaces in codimension one. To this aim, following the approach by Anzellotti–Serapioni–Tamanini, we study the class of currents that naturally arise as weak limits of Gauss graphs of smooth functions. The curvature measures are then studied in the non-parametric case. Concerning homogeneous functions, some model examples are studied in detail. Finally, a new gap phenomenon is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Dal Maso, G.: New lower semicontinuity results for polyconvex integrals. Calc. Var. 2, 329–372 (1994)

    Article  MathSciNet  Google Scholar 

  2. Acerbi, E., Mucci, D.: Curvature-dependent energies: a geometric and analytical approach. Proc. R. Soc. Edinb. 147A, 449–503 (2017)

    Article  MathSciNet  Google Scholar 

  3. Acerbi, E., Mucci, D.: Curvature-dependent energies: the elastic case. Nonlinear Anal. 153, 7–34 (2017)

    Article  MathSciNet  Google Scholar 

  4. Allard, W.K.: First variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Oxford (2000)

  6. Anzellotti, G.: Functionals depending on curvatures. Rend. Sem. Mat. Univ. Pol. Torino. Fascicolo speciale 1989: P.D.E. and Geometry, pp. 47–62 (1988)

  7. Anzellotti, G., Serapioni, R., Tamanini, I.: Curvatures, Functionals, Currents. Indiana Univ. Math. J. 39, 617–669 (1990)

    Article  MathSciNet  Google Scholar 

  8. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  Google Scholar 

  9. Buttazzo, G., Mizel, V.J.: Interpretation of the Lavrentiev phenomenon by relaxation. J. Funct. Anal. 110, 434–460 (1992)

    Article  MathSciNet  Google Scholar 

  10. Dal Maso, G.: Integral representation on \(\text{ BV }({\varOmega })\) of \(\text{ GG }\)-limits of variational integrals. Manuscr. Math. 30, 387–416 (1980)

    Article  Google Scholar 

  11. Dal Maso, G., Fonseca, I., Leoni, G., Morini, M.: A higher order model for image restoration: the one dimensional case. Siam J. Math. Appl. 40(6), 2351–2391 (2009)

    Article  MathSciNet  Google Scholar 

  12. De Giorgi, E., Letta, G.: Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. S.N.S. Pisa Cl. Sci. 4, 61–99 (1977)

    MATH  Google Scholar 

  13. Delladio, S.: Special generalized Gauss graphs and their application to minimization of functionals involving curvatures. J. Reine Angew. Math. 486, 17–43 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Federer, H.: Geometric Measure Theory. Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

  15. Federer, H., Fleming, W.: Normal and integral currents. Ann. Math. 72, 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  16. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 106, 97–159 (1989). Erratum and addendum. Arch. Ration. Mech. Anal. 109, 385–392 (1990)

  17. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations, vol. I. Ergebnisse Math. Grenzgebiete (III Ser) 37. Springer, Berlin (1998)

  18. Giusti, E.: Minimal Surfaces and Functions of Bounded Variations. Birkauser, Boston (1984)

    Book  Google Scholar 

  19. Hutchinson, J.E.: Second fundamental form for varifolds and existence of surfaces minimizing curvature. Indiana Univ. Math. J. 35, 45–71 (1986)

    Article  MathSciNet  Google Scholar 

  20. Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Cornerstones. Birkhäuser, Boston (2008)

    Book  Google Scholar 

  21. Mantegazza, C.: Curvature varifolds with boundary. J. Differ. Geom. 43, 807–843 (1996)

    Article  MathSciNet  Google Scholar 

  22. Müller, S.: Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris Sér. I Math. 311, 13–17 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Simon, L.: Lectures on Geometric Measure Theory. Proc. C.M.A. 3, Australian National University, Canberra (1983)

  24. Sullivan, J.M.: Curvature of smooth and discrete surfaces. In: Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds.) Discrete Differential Geometry. Oberwolfach Seminars, vol. 38. Birkäuser, Boston (2008)

    Chapter  Google Scholar 

  25. Sullivan, J.M.: Curves of finite total curvature. In: Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds.) Discrete Differential Geometry. Oberwolfach Seminars, vol. 38. Birkäuser, Boston (2008)

    Chapter  Google Scholar 

  26. Truesdell, C.: The influence of elasticity on analysis: the classical heritage. Bull. Am. Math. Soc. 9, 293–310 (1983)

    Article  Google Scholar 

  27. Willmore, T.: Note on embedded surfaces. An. Stiint. Univ. “Al. I. Cusa” Iasi Sect. I A Math. II, 443–446 (1965)

Download references

Acknowledgements

I would like to thank E. Acerbi and A. Saracco for several useful discussions. The author is a member of the “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni” (GNAMPA) of the INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Mucci.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Homogeneous Functions

Assume \(u:B^2\rightarrow {\mathbb {R}}\) satisfies \(u(x)=u(x/|x|)\) for each \(x\in B^2\setminus \{0_{{\mathbb {R}}^2}\}\), whence we can write \(u(x)=f(\theta )\) for some function \(f:[0,2\pi ]\rightarrow {\mathbb {R}}\), where \(x=(\rho \,\cos \theta ,\rho \,\sin \theta )\). Denoting for simplicity \(s:=\sin \theta \) and \(c:=\cos \theta \), we formally compute on \(B^2\setminus \{0_{{\mathbb {R}}^2}\}\)

$$\begin{aligned} \nabla u=\Bigl (-{{\dot{f}} s\over \rho },{{\dot{f}} c\over \rho } \Bigr ),\quad {{{\nu }}_u}={1\over (\rho ^2+{\dot{f}} ^2)^{1/2}}\,({\dot{f}} s,-{\dot{f}} c,\rho ) \end{aligned}$$

and hence, setting \(F:=\rho ^2+{\dot{f}} ^2\), we get

$$\begin{aligned} \begin{array}{l} \displaystyle \partial _1{{{\nu }}_u}^1={-1\over \rho \,F^{3/2}}\bigl [ \rho ^2(2{\dot{f}} s\,c+\ddot{f} s^2)+{\dot{f}} ^3s\,c \bigr ] \\ \displaystyle \partial _2{{{\nu }}_u}^1={1\over \rho \,F^{3/2}}\bigl [ \rho ^2({\dot{f}} (c^2-s^2)+\ddot{f} s\,c)+{\dot{f}} ^3 c^2 \bigr ] \\ \displaystyle \partial _1{{{\nu }}_u}^2={1\over \rho \,F^{3/2}}\bigl [ \rho ^2({\dot{f}} (c^2-s^2)+\ddot{f} s\,c)-{\dot{f}} ^3 s^2 \bigr ] \\ \displaystyle \partial _2{{{\nu }}_u}^2={1\over \rho \,F^{3/2}}\bigl [ \rho ^2(2{\dot{f}} s\,c-\ddot{f} c^2)+{\dot{f}} ^3s\,c \bigr ] \\ \displaystyle \partial _1{{{\nu }}_u}^3={1\over F^{3/2}}\, {\dot{f}} ({\dot{f}} c+\ddot{f} s) \\ \displaystyle \partial _2{{{\nu }}_u}^3={1\over F^{3/2}}\, {\dot{f}} ({\dot{f}} s-\ddot{f} c). \end{array} \end{aligned}$$

This yields to

$$\begin{aligned} \begin{array}{rl} |\nabla {{{\nu }}_u}^1|^2= &{} \displaystyle {1\over \rho ^2F^3}\,\bigl [\rho ^4({\dot{f}} ^2+\ddot{f} ^2s^2+2s\,c\,{\dot{f}} \ddot{f} )+2\rho ^2{\dot{f}} ^3({\dot{f}} c^2+\ddot{f} s\,c)+{\dot{f}} ^6c^2 \bigr ]\\ |\nabla {{{\nu }}_u}^2|^2= &{} \displaystyle {1\over \rho ^2F^3}\,\bigl [\rho ^4({\dot{f}} ^2+\ddot{f} ^2c^2-2s\,c\,{\dot{f}} \ddot{f} )+2\rho ^2{\dot{f}} ^3({\dot{f}} s^2-\ddot{f} s\,c)+{\dot{f}} ^6s^2 \bigr ] \\ |\nabla {{{\nu }}_u}^3|^2= &{} \displaystyle {1\over F^3}\,{\dot{f}} ^2({\dot{f}} ^2+\ddot{f} ^2), \end{array} \end{aligned}$$

and hence

$$\begin{aligned} |\nabla {{{\nu }}_u}|^2= \displaystyle {1\over \rho ^2(\rho ^2+{\dot{f}} ^2)^3}\,\bigl [\rho ^4(\ddot{f} ^2+2{\dot{f}} ^2)+\rho ^2(3{\dot{f}} ^4+{\dot{f}} ^2\ddot{f} ^2)+{\dot{f}} ^6\bigr ]. \end{aligned}$$

Setting moreover for simplicity \(A_j:=\left| \begin{array}{cc} \partial _1u &{} \partial _2u \\ \partial _1{{{\nu }}_u}^j &{} \partial _2{{{\nu }}_u}^j \end{array}\right| \), we also compute

$$\begin{aligned} A_1= {{\dot{f}} ^2 s\over F^{3/2}},\quad A_2= -{{\dot{f}} ^2 c\over F^{3/2}},\quad A_3=- {{\dot{f}} ^3 \over \rho \,F^{3/2}} \end{aligned}$$

so that

$$\begin{aligned} {A_1^2+A_2^2+A_3^2}={{\dot{f}} ^4 \over \rho ^2\,(\rho ^2+{\dot{f}} ^2)^2}. \end{aligned}$$

Also, setting \(B_{jk}:=\left| \begin{array}{cc} \partial _1{{{\nu }}_u}^j &{} \partial _2{{{\nu }}_u}^j \\ \partial _1{{{\nu }}_u}^k &{} \partial _2{{{\nu }}_u}^k \end{array}\right| \), we compute

$$\begin{aligned} B_{12}=-{{\dot{f}} ^2 \over F^2},\quad B_{13}=-{{\dot{f}} ^3\,c\over \rho \,F^2},\quad \quad B_{23}=-{{\dot{f}} ^3\,s\over \rho \,F^2}, \end{aligned}$$

so that

$$\begin{aligned} {B_{12}^2+B_{13}^2+B_{23}^2}={{\dot{f}} ^4 \over \rho ^2\,(\rho ^2+{\dot{f}} ^2)^{3}}. \end{aligned}$$

On account of (2.15) and (2.18), we, thus, obtain

$$\begin{aligned} \begin{array}{rl} |\xi _u^{(0)}|^2= &{} g_u = \displaystyle 1+|\nabla u|^2={\rho ^2+{\dot{f}} ^2 \over \rho ^2}\\ |\xi _u^{(1)}|^2= &{} \displaystyle |\nabla {{{\nu }}_u}|^2+A_1^2+A_2^2+A_3^2= \displaystyle {1\over \rho ^2(\rho ^2+{\dot{f}} ^2)^2}\,\bigl [\rho ^2\ddot{f} ^2+2\,(\rho ^2+{\dot{f}} ^2){\dot{f}} ^2\bigr ] \\ |\xi _u^{(2)}|^2= &{} \displaystyle {B_{12}^2+B_{13}^2+B_{23}^2}={{\dot{f}} ^4 \over \rho ^2\,(\rho ^2+{\dot{f}} ^2)^{3}}. \end{array} \end{aligned}$$

Now, by the formulas (2.11) and (2.12) we infer the explicit expressions of the Gauss and mean curvatures

$$\begin{aligned} \mathbf{K}_u=-{{\dot{f}} ^2 \over (\rho ^2+{\dot{f}} ^2)^2},\qquad \mathbf{H}_u={1\over 2}\,{\rho \,\ddot{f} \over (\rho ^2+{\dot{f}} ^2)^{3/2}}, \end{aligned}$$

and hence, we readily recover the expressions of the three terms \(|\xi _u^{(i)}|\) given by the formulas (2.18). In particular, we get

$$\begin{aligned} \sqrt{g_u}\,\mathbf{K}_u = -{{\dot{f}} ^2 \over \rho \,(\rho ^2+{\dot{f}} ^2)^{3/2}},\qquad \sqrt{g_u}\,\mathbf{H}_u={1\over 2}\,{\ddot{f} \over \rho ^2+{\dot{f}} ^2}. \end{aligned}$$

We also compute

$$\begin{aligned} \begin{array}{rl} |\xi _u|^2= |\xi _u^{(0)}|^2+|\xi _u^{(1)}|^2+|\xi _u^{(2)}|^2= &{}\displaystyle {g\over (\rho ^2+{\dot{f}} ^2)^4}\,\bigl [ (\rho ^2+2{\dot{f}} ^2)^2+\rho ^2(\rho ^2+{\dot{f}} ^2)\,\ddot{f} ^2\bigr ] \\ = &{}\displaystyle {1\over \rho ^2(\rho ^2+{\dot{f}} ^2)^3}\,\bigl [ (\rho ^2+2{\dot{f}} ^2)^2+\rho ^2(\rho ^2+{\dot{f}} ^2)\,\ddot{f} ^2\bigr ]. \end{array} \end{aligned}$$

Therefore, for f smooth, on account of (2.8) by the area formula we obtain

$$\begin{aligned} \mathcal{H}^2(\mathcal{G}\mathcal{G}_u)= \displaystyle \int _{B^2}|\xi _u|\,d\mathcal{L}^2 = \displaystyle \int _0^1\int _0^{2\pi }{[ (\rho ^2+2{\dot{f}} ^2)^2+\rho ^2(\rho ^2+{\dot{f}} ^2)\,\ddot{f} ^2 ]^{1/2} \over (\rho ^2+{\dot{f}} ^2)^{3/2}}\,d\theta \,d\rho . \end{aligned}$$

Remark A.1

Notice that \(|\xi _u|\in L^1(B^2)\) if and only if \(|\xi _u^{(i)}|\in L^1(B^2)\) for \(i=0,1,2\), and we get

$$\begin{aligned} \begin{array}{rl} \displaystyle \int _{B^2}|\xi _u^{(0)}|\,d\mathcal{L}^2 = &{}\displaystyle \int _0^1\int _0^{2\pi }\sqrt{\rho ^2+{\dot{f}} ^2}\,d\theta \,d\rho \\ \displaystyle \int _{B^2}|\xi _u^{(1)}|\,d\mathcal{L}^2 = &{} \displaystyle \int _0^1\int _0^{2\pi } {\bigl [\rho ^2\ddot{f} ^2+2\,(\rho ^2+{\dot{f}} ^2){\dot{f}} ^2\bigr ]^{1/2} \over \rho ^2+{\dot{f}} ^2} \,\,d\theta \,d\rho \\ \displaystyle \int _{B^2}|\xi _u^{(2)}|\,d\mathcal{L}^2 = &{} \displaystyle \int _0^1\int _0^{2\pi } {{\dot{f}} ^2\over (\rho ^2+{\dot{f}} ^2)^{3/2}}\,\,d\theta \,d\rho .\end{array} \end{aligned}$$

Moreover, since \(|\xi _u|=\sqrt{g_u}\,\sqrt{(1-\mathbf{K}_u)^2+(2\,\mathbf{H}_u)^2}\) we have

$$\begin{aligned} {1\over \sqrt{2}}\,\bigl (\sqrt{g_u}\,|1-\mathbf{K}_u|+\sqrt{g_u}\, |2\mathbf{H}_u| \bigr )\le |\xi _u| \le \sqrt{g_u}\,|1-\mathbf{K}_u|+\sqrt{g_u}\, |2\,\mathbf{H}_u|, \end{aligned}$$

where, we recall,

$$\begin{aligned} \sqrt{g_u}={\sqrt{\rho ^2+{\dot{f}} ^2}\over \rho },\quad |1-\mathbf{K}_u| = 1+ {{\dot{f}} ^2 \over (\rho ^2+{\dot{f}} ^2)^2}, \quad |2\,\mathbf{H}_u|= {\rho \,|\ddot{f} | \over (\rho ^2+{\dot{f}} ^2)^{3/2}}, \end{aligned}$$

and hence, we deduce that \(|\xi _u|\in L^1(B^2)\) if and only if

$$\begin{aligned}&\int _{B^2}{(\rho ^2+{\dot{f}} ^2)^{1/2}\over \rho }\,d\mathcal{L}^2<\infty , \,\, \int _{B^2}{1\over \rho }\,{{\dot{f}} ^2 \over ({\rho ^2+{\dot{f}} ^2})^{3/2}}\,d\mathcal{L}^2<\infty ,\,\,{\text {and}}\,\, \\&\quad \int _{B^2}{|\ddot{f} | \over \rho ^2+{\dot{f}} ^2}\,d\mathcal{L}^2<\infty . \end{aligned}$$

Appendix B: An Energy Computation

We compute the energy of the various components of the current \(\widetilde{\varSigma }_u\) in (8.1), referring to Example 8.1.

The Absolutely continuous term has energy \(\mathrm{E}(GG_u^a)={{\mathcal {E}}}(u)\), and it is given by the sum of the three integrals in Remark A.1, with f given by (8.4). The Cantor component \(GG_u^C\) is equal to zero.

The Jump component is \( GG_u^J=\varPhi ^J_\#{[\![\, I\times I\, ]\!]}\), see (8.7). Consider the 2-vector \(\overrightarrow{\xi }:=\partial _s \varPhi ^J\wedge \partial _\lambda \varPhi ^J\). The mass of \(GG_u^J\) agrees with the area of the Gauss graph surface \(\varPhi ^J({I\times I})\). Moreover, the stratification \(\overrightarrow{\xi }=\xi ^{(0)}+\xi ^{(1)}+\xi ^{(2)}\) gives \(\xi ^{(2)}=0\) and

$$\begin{aligned}&\xi ^{(0)}=[u(\gamma _0)]^\pm \bigl ( \mathbf{{t}}_1\,e_1\wedge e_3+ \mathbf{{t}}_2\,e_2\wedge e_3),\qquad \\&\xi ^{(1)}=-[u(\gamma _0)]^\pm \,\sigma _u\,\mathbf{{k}}\,\bigl (\mathbf{{t}}_1\,e_3\wedge \varepsilon _1+\mathbf{{t}}_2\,e_3\wedge \varepsilon _2 \bigr ), \end{aligned}$$

where \(\gamma _0(s):=(s,0)\), \(\mathbf{{t}}(s)=(\mathbf{{t}}_1,\mathbf{{t}}_2)\) is the unit tangent vector to the jump set, \(\sigma _u(s):=\mathrm{sgn}[u(\gamma _0(s))]^\pm \) is the sign of the Jump, and \(\mathbf{{k}}(s)\) the signed curvature, whence \(\mathbf{{t}}(s)\equiv (1,0)\)), \(\sigma _u(s)\equiv 1\), \(\mathbf{{k}}(s)\equiv 0\). We, thus, have \(\mathrm{E}_2(GG_u^J)=0\), whereas by the area formula, we get

$$\begin{aligned} \begin{array}{rl} \mathrm{E}_0(GG_u^J)= &{} \displaystyle \int _{I\times I}|[u(\gamma _0(s))]^\pm |\,ds\,d\lambda =|Du^J|(B^2)=1, \\ \mathrm{E}_1(GG_u^J)= &{} \displaystyle \int _{I}|[u(\gamma _0(s))]^\pm |\,\mathbf{{k}}(s)\,ds=0. \end{array} \end{aligned}$$

The Jump-edge component is \( S_u^{Je}= \varPhi ^{Je}_{+\,\#}{[\![\, I\times I\, ]\!]} - \varPhi ^{Je}_{-\,\#}{[\![\, I\times I\, ]\!]} \), whence the mass decomposition

$$\begin{aligned} \mathbf{M}(S_u^{Je})= \mathbf{M}(\varPhi ^{Je}_{+\,\#}{[\![\, I\times I\, ]\!]})+\mathbf{M}(\varPhi ^{Je}_{-\,\#}{[\![\, I\times I\, ]\!]}) \end{aligned}$$

and a similar energy splitting hold. Furthermore, using the formulas after equation (8.10), we get

$$\begin{aligned} \partial _s{\varPhi ^{Je}_\pm }&= {\dot{\gamma }}^1_0\,e_1+{\dot{\gamma }}^2_0\,e_2+ \nabla u^\pm (\gamma _0)\bullet {\dot{\gamma }}_0\,e_3+ \sum _{j=1}^3\partial _s{(\phi ^{Je}_\pm )}^j\,\varepsilon _j,\quad \\&\quad \partial _\lambda {\varPhi ^{Je}_\pm } = \sum _{j=1}^3\partial _\lambda {(\phi ^{Je}_\pm )}^j\,\varepsilon _j, \end{aligned}$$

and hence, we may decompose \(\overrightarrow{\xi }:= \partial _s{\varPhi ^{Je}_\pm }\wedge \partial _\lambda {\varPhi ^{Je}_\pm }=\xi ^{(0)}+\xi ^{(1)}+\xi ^{(2)}\), where this time the first stratum \(\xi ^{(0)}=0\) and

$$\begin{aligned} \xi ^{(1)}=\sum _{j=1}^3\,\partial _\lambda {(\phi ^{Je}_\pm )}^j\Bigl (\sum _{i=1}^2 {\dot{\gamma }}^i_0\,e_i\wedge \varepsilon _j + \nabla u^\pm (\gamma _0)\bullet {\dot{\gamma }}_0\,e_3\wedge \varepsilon _j \Bigr ),\\ \xi ^{(2)}=\sum _{1\le j_1<j_2\le 3}\bigl (\partial _s{(\phi ^{Je}_\pm )}^{j_1} \partial _\lambda {(\phi ^{Je}_\pm )}^{j_2} -\partial _\lambda {(\phi ^{Je}_\pm )}^{j_1} \partial _s{(\phi ^{Je}_\pm )}^{j_2}\bigr )\,\varepsilon _{j_1}\wedge \varepsilon _{j_2}. \end{aligned}$$

We, thus, get

$$\begin{aligned} |\xi ^{(1)}|=\sqrt{1+(\partial _\mathbf{{t}}u^\pm (\gamma _0))^2}\,|\partial _\lambda {\phi ^{Je}_\pm }|,\quad |\xi ^{(2)}|=|J_2 \phi ^{Je}_\pm |, \end{aligned}$$

and hence,

$$\begin{aligned} \mathrm{E}(S_u^{Je})=\mathrm{E}(\varPhi ^{Je}_{+\,\#}{[\![\, I\times I\, ]\!]})+\mathrm{E}(\varPhi ^{Je}_{-\,\#}{[\![\, I\times I\, ]\!]}), \end{aligned}$$

where \(\mathrm{E}_0(\varPhi ^{Je}_{\pm \,\#}{[\![\, I\times I\, ]\!]})=0\) and, again by the area formula,

$$\begin{aligned} \mathrm{E}_1(\varPhi ^{Je}_{\pm \,\#}{[\![\, I\times I\, ]\!]})= \int _{I}\sqrt{1+(\partial _\mathbf{{t}}u^\pm (\gamma _0(s)))^2}\Bigl \{\int _I|\partial _\lambda {\phi ^{Je}_\pm (s,\lambda ))}|\,d\lambda \Bigr \}\,ds ={\pi \over 2}, \end{aligned}$$

where we used that \(\partial _\mathbf{{t}}u^\pm (\gamma _0(s))\equiv 0\), whereas

$$\begin{aligned} \mathrm{E}_2(\varPhi ^{Je}_{\pm \,\#}{[\![\, I\times I\, ]\!]})=\mathcal{H}^2(\phi ^{Je}_\pm (I\times I))={\pi \over 2} \end{aligned}$$

and correspondingly

$$\begin{aligned} \mathbf{M}(\varPhi ^{Je}_{\pm \,\#}{[\![\, I\times I\, ]\!]})=\int _{I\times I} \Bigl ( (1+(\partial _\mathbf{{t}}u^\pm (\gamma _0))^2)\,(\partial _\lambda {\phi ^{Je}_\pm })^2+ (J_2 \phi ^{Je}_\pm )^2\Bigr )^{1/2}\,ds\,d\lambda ={\sqrt{2}\over 2}\,\pi . \end{aligned}$$

Finally, the Edge component is \(S_u^{e}= \sum _{k=1}^2 {\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]} \), see (8.13). We compute:

$$\begin{aligned} \mathbf{M}(S_u^{e})= \sum _{k=1}^2 \mathbf{M}({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]}) ,\qquad \mathrm{E}(S_u^{e})= \sum _{k=1}^2 \mathrm{E}({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]}), \end{aligned}$$

where for \(k=1,2\) we have \(\mathrm{E}_0({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]})=0\),

$$\begin{aligned} \mathrm{E}_1({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]})= \int _{I}\sqrt{1+(\partial _\mathbf{{t}}u(\gamma _k(s)))^2}\Bigl \{\int _I|\partial _\lambda {\phi ^{e}_k(s,\lambda ))}|\,d\lambda \Bigr \}\,ds \end{aligned}$$

with \(\gamma _1(s):=(0,s)\) and \(\gamma _2(s):=(0,s-1)\), and

$$\begin{aligned} \mathrm{E}_2({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]})=\mathcal{H}^2(\phi ^{e}_k(I\times I)) \end{aligned}$$

whereas concerning the mass, we get

$$\begin{aligned} \mathbf{M}({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]})=\int _{I\times I} \Bigl ( (1+(\partial _\mathbf{{t}}u(\gamma _k))^2)\,(\partial _\lambda {\phi ^{e}_k})^2+ (J_2 \phi ^{e}_k)^2\Bigr )^{1/2}\,ds\,d\lambda . \end{aligned}$$

By (8.14), we check \(|\partial _\lambda {\phi ^{e}_1(s,\lambda ))}|=(\pi /2-\arctan s)\), \(|\partial _\lambda {\phi ^{e}_2(s,\lambda ))}|=\pi /2-\arctan (1-s)\), and \(J_2 \phi ^{e}_k\equiv 0\), whereas \(\partial _\mathbf{{t}}u(\gamma _k(s))\equiv 0\). We, thus, conclude that for \(k=1,2\)

$$\begin{aligned} \begin{array}{c} \displaystyle \mathrm{E}_1({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]})=\int _I\Bigl ({\pi \over 2}-\arctan s \Bigr )\,ds={\pi \over 4}+{1\over 2}\,\log 2 \\ \displaystyle \mathrm{E}_2({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]})=0,\qquad \mathbf{M}({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]})=\mathrm{E}_1({\varPhi ^{e}_k}_\#{[\![\, I\times I\, ]\!]}). \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucci, D. On the Curvature Energy of Cartesian Surfaces. J Geom Anal 31, 8460–8519 (2021). https://doi.org/10.1007/s12220-020-00601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00601-0

Keywords

Mathematics Subject Classification

Navigation