Skip to main content
Log in

Existence of the Gauge for Fractional Laplacian Schrödinger Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(\Omega \subseteq \mathbb {R}^n\) be an open set, where \(n \ge 2\). Suppose \(\omega \) is a locally finite Borel measure on \(\Omega \). For \(\alpha \in (0,2)\), define the fractional Laplacian \((-\triangle )^{\alpha /2}\) via the Fourier transform on \(\mathbb {R}^n\), and let G be the corresponding Green’s operator of order \(\alpha \) on \(\Omega \). Define \(T(u) = G(u \omega ).\) If \(\Vert T \Vert _{L^2(\omega ) \rightarrow L^2 (\omega )} <1\), we obtain a representation for the unique weak solution u in the homogeneous Sobolev space \(L^{\alpha /2, 2}_0 (\Omega )\) of

$$\begin{aligned} (-\triangle )^{\alpha /2} u = u \omega + \nu \,\,\, \text{ on } \,\,\, \Omega , \,\,\, u=0 \,\,\, \text{ on } \,\,\, \Omega ^c, \end{aligned}$$

for \(\nu \) in the dual Sobolev space \(L^{-\alpha /2, 2} (\Omega )\). If \(\Omega \) is a bounded \(C^{1,1}\) domain, this representation yields matching exponential upper and lower pointwise estimates for the solution when \(\nu = \chi _{\Omega }\). These estimates are used to study the existence of a solution \(u_1\) (called the “gauge”) of the integral equation \(u_1=1+G(u_1 \omega )\) corresponding to the problem

$$\begin{aligned} (-\triangle )^{\alpha /2} u = u \omega \,\,\, \text{ on } \,\,\, \Omega , \,\,\, u \ge 0 \,\,\, \text{ on } \,\,\, \Omega , \,\,\, u=1 \,\,\, \text{ on } \,\,\, \Omega ^c . \end{aligned}$$

We show that if \(\Vert T \Vert <1\), then \(u_1\) always exists if \(0<\alpha <1\). For \(1 \le \alpha <2\), a solution exists if the norm of T is sufficiently small. We also show that the condition \(\Vert T \Vert <1\) does not imply the existence of a solution if \(1< \alpha <2\). The condition \(\Vert T \Vert \le 1\) is necessary for the existence of \(u_1\) for all \(0<\alpha \le 2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der math. Wissenschaften 314, Springer, Berlin (1996)

  2. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondracek, Z.: Potential Analysis of Stable Processes and its Extensions, Lecture Notes Math. 180, Springer, Berlin, (2009)

  3. Chen, Z.Q., Song, R.: Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 112, 465–501 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chung, K.L., Zhao,Z.: From Brownian Motion to Schrödinger’s Equation, Grundlehren der math. Wissenschaften 312, Springer, Berlin (1995)

  5. Dávila, J., Dupaigne, L.: Comparison principles for PDEs with a singular potential. Proc. R. Soc. Edinb. Sec. A 133, 61–83 (2003)

    Article  Google Scholar 

  6. Deny, J.: Les potentiels d’energie finie. Acta Math. 82, 107–183 (1950)

    Article  MathSciNet  Google Scholar 

  7. Dyda, B.: A fractional order Hardy inequality. Ill. J. Math. 48, 575–588 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  9. Evans, L.: Partial Differential Equations, \(2^{nd}\) ed., Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, (2010)

  10. Filippas, S., Moschini, L., Tertikas, A.: Sharp trace Hardy-Sobolev-Maz’ya inequalities and the fractional Laplacian. Arch. Ration. Mech. Anal. 208, 109–161 (2013)

    Article  MathSciNet  Google Scholar 

  11. Frazier, M., Verbitsky, I.E.: Positive solutions to Schrödinger’s equation and the exponential integrability of the balayage. Ann. Inst. Fourier 67, 1393–1425 (2017)

    Article  MathSciNet  Google Scholar 

  12. Frazier, M., Nazarov, F., Verbitsky, I.E.: Global estimates for kernels of Neumann series and Green’s functions. J. Lond. Math. Soc. 90(2), 903–918 (2014)

    Article  MathSciNet  Google Scholar 

  13. Fuglede, B., Zorii, N.: Green kernels associated with Riesz kernels. Ann. Acad. Sci. Fenn. Math. 43, 121–145 (2018)

  14. Grigor’yan, A., Verbitsky, I.: Pointwise estimates of solutions to nonlinear equations for nonlocal operators. Ann. Scuola Norm. Super. Pisa 20, 721–750 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Hansen, W., Netuka, I.: On the Picard principle for \(\triangle + \mu \). Math. Z. 270(3–4), 783–807 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Stat. 17, 339–364 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Kwaśnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, 7–51 (2017)

    Article  MathSciNet  Google Scholar 

  18. Landkof, N. S.: Foundations of Modern Potential Theory, Grundlehren der math. Wissenschaften, 180, Springer, New York (1972)

  19. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)

    Article  MathSciNet  Google Scholar 

  20. Musina, R., Nazarov, A. I.: On fractional Laplacians, Commun. P. D. E. 39 (2014), 1780–1790

  21. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  22. Vazquez, J.L.: The Mathematical Theories of Diffusion. C.I.M.E. Summer Course, Lecture Notes in Mathematics, Springer, Nonlinear and Fractional Diffusion (2016)

Download references

Acknowledgements

We thank Fedor Nazarov for helpful conversations on the subject matter of this paper, especially with regard to Theorems 1.3 and 1.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Frazier.

Additional information

Dedication: For Guido Weiss, my postdoctoral advisor, with appreciation—Michael W. Frazier.

For Professor Guido Weiss, a wonderful mathematician and human being—Igor E. Verbitsky.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frazier, M.W., Verbitsky, I.E. Existence of the Gauge for Fractional Laplacian Schrödinger Operators. J Geom Anal 31, 9016–9044 (2021). https://doi.org/10.1007/s12220-020-00576-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00576-y

Keywords

Mathematics Subject Classification

Navigation