Skip to main content
Log in

Direct Methods for Pseudo-relativistic Schrödinger Operators

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we establish various maximal principles and develop the direct moving planes and sliding methods for equations involving the physically interesting (nonlocal) pseudo-relativistic Schrödinger operators \((-\Delta +m^{2})^{s}\) with \(s\in (0,1)\) and mass \(m>0\). As a consequence, we also derive multiple applications of these direct methods. For instance, we prove monotonicity, symmetry and uniqueness results for solutions to various equations involving the operators \((-\Delta +m^{2})^{s}\) in bounded or unbounded domains with certain geometrical structures (e.g., coercive epigraph and epigraph), including pseudo-relativistic Schrödinger equations, 3D boson star equations and the equations with De Giorgi-type nonlinearities. When \(m=0\) and \(s=1\), equations with De Giorgi-type nonlinearities are related to De Giorgi conjecture connected with minimal surfaces and the scalar Ginzburg–Landau functional associated to harmonic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, V.: Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator. J. Math. Phys. 57(5), 18 (2016)

    MATH  Google Scholar 

  2. Ambrosio, L., Cabré, X.: Entire solutions of semilinear elliptic equations in \({\mathbb{R}}^{3}\) and a conjecture of De Giorgi. J. Am. Math. Soc. 13, 725–739 (2000)

    MATH  Google Scholar 

  3. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Inequalitites for second-order elliptic equations with applications to unbounded domains, I. Duke Math. J. 81, 467–494 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Monotonicity for elliptic equations in unbounded Lipschitz domains. Commun. Pure Appl. Math. 50, 1089–1111 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Brandle, C., Colorado, E., de Pablo, A., Sanchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. A 143, 39–71 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  7. Berestycki, H., Hamel, F., Monneau, R.: One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J. 103, 375–396 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Berestycki, H., Nirenberg, L.: Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations. J. Geom. Phys. 5, 237–275 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Berestycki, H., Nirenberg, L.: Analysis, et Cetera. In: Rabinowitz, P., Zehnder, E. (eds.) Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, pp. 115–164. Academic Press, Boston (1990)

    MATH  Google Scholar 

  10. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22, 1–37 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Cao, D., Dai, W.: Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity. Proc. R. Soc. Edinb. 149, 979–994 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Chen, W., Dai, W., Qin, G.: Liouville type theorems, a priori estimates and existence of solutions for critical order Hardy-Hénon equations in \({\mathbb{R}}^N\), preprint, submitted, arXiv: 1808.06609

  13. Chang, S.-Y.A., Gonzàlez, M.D.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    MathSciNet  MATH  Google Scholar 

  16. Chen, W., Li, C.: On Nirenberg and related problems: a necessary and sufficient condition. Commun. Pure Appl. Math. 48, 657–667 (1995)

    MATH  Google Scholar 

  17. Chen, W., Li, C.: Moving planes, moving spheres, and a priori estimates. J. Diff. Equ. 195(1), 1–13 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Chen, W., Li, C.: Maximum principles for the fractional \(p\)-Laplacian and symmetry of solutions. Adv. Math. 335, 735–758 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Chen, W., Liu, Z.: Maximum principles and monotonicity of solutions for fractional \(p\)-equations in unbounded domains, preprint, (2019) arXiv: 1905.06493

  20. Chen, W., Li, C., Li, Y.: A direct method of moving planes for the fractional Laplacian. Adv. Math. 308, 404–437 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Chen, W., Li, Y., Ma, P.: The Fractional Laplacian. World Scientific Publishing Co. PVT. Ltd., Singapore (2020)

    MATH  Google Scholar 

  23. Chen, W., Li, Y., Zhang, R.: A direct method of moving spheres on fractional order equations. J. Funct. Anal. 272(10), 4131–4157 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Carmona, R., Masters, W.C., Simon, B.: Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91, 117–142 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Constantin, P.: Euler equations, Navier–Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows. Vol. 1871 of Lecture Notes in Math., 1–43, Springer, Berlin (2006)

  26. Chen, W., Qi, S.: Direct methods on fractional equations. Disc. Cont. Dyn. Syst. A 39, 1269–1310 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. PDEs 32, 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Choi, W., Seok, J.: Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations. J. Math. Phys. 57, 15 (2016)

    MATH  Google Scholar 

  29. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Caffarelli, L., Vasseur, L.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Chen, W., Wu, L.: The sliding methods for the fractional \(p\)-Laplacian. Adv. Math. 361, 26 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Chen, W., Wu, L.: Monotonicity of solutions for fractional equations with De Giorgi type nonlinearities, preprint (2019), arXiv: 1905.09999

  33. Chen, W., Wu, L.: A maximum principle on unbounded domains and a Liouville theorem for fractional p-harmonic functions, preprint (2019), arXiv:1905.09986

  34. Chang, S.-Y.A., Yang, P.C.: On uniqueness of solutions of \(n\)-th order differential equations in conformal geometry. Math. Res. Lett. 4, 91–102 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Dai, W., Fang, Y., Huang, J., Qin, Y., Wang, B.: Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Disc. Contin. Dyn. Syst. A 39(3), 1389–1403 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Dai, W., Fang, Y., Qin, G.: Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes. J. Diff. Equ. 265, 2044–2063 (2018)

    MathSciNet  MATH  Google Scholar 

  37. De Giorgi, E.: Convergence problems for functionals and operators. In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), Pitagora, Bologna, pp. 131–188 (1979)

  38. del Pino, M., Kowalczyk, M., Wei, J.: On De Giorgi’s conjecture in dimension \(N\ge 9\). Ann. Math. 174, 1485–1569 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Dai, W., Liu, Z.: Classification of nonnegative solutions to static Schrödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities. Calc. Var. PDEs 58(4), 24 (2019)

    MATH  Google Scholar 

  40. Dai, W., Liu, Z., Qin, G.: Classification of nonnegative solutions to static Schrödinger-Hartree-Maxwell type equations, preprint, submitted for publication, arXiv: 1909.00492

  41. Dai, W., Qin, G.: Classification of nonnegative classical solutions to third-order equations. Adv. Math. 328, 822–857 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Dai, W., Qin, G.: Liouville type theorems for fractional and higher order Hénon-Hardy equations via the method of scaling spheres, preprint, submitted for publication, arXiv: 1810.02752

  43. Dai, W., Qin, G.: Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications, preprint, arXiv: 1811.00881

  44. Dall’Acqua, A., Sorensen, T., Stockmeyer, E.: Hartree–Fock theory for pseudo-relativistic atoms. Ann. Henri Poincare 9, 711–742 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Dipierro, S., Soave, N., Valdinoci, E.: On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results. Math. Ann. 369, 1283–1326 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Esteban, M.J., Lions, P.-L.:Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. R. Soc. Edinb., 93, no. 1-2, 1-14 (1982/1983)

  47. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  48. Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Fall, M.M.: Entire \(s\)-harmonic functions are affine. Proc. Am. Math. Soc. 144, 2587–2592 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Fall, M.M., Felli, V.: Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential. J. Funct. Anal. 267(6), 1851–1877 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Fall, M.M., Felli, V.: Unique continuation properties for relativistic Schrödinger operators with a singular potential. Disc. Contin. Dyn. Syst. A 35(12), 5827–5867 (2015)

    MATH  Google Scholar 

  52. Fröhlich, J., Jonsson, B.L.G., Lenzmann, E.: Boson stars as solitary waves. Commun. Math. Phys. 274, 1–30 (2007)

    MathSciNet  MATH  Google Scholar 

  53. Fröhlich, J., Jonsson, B.L.G., Lenzmann, E.: Effective dynamics for boson stars. Nonlinearity 20(5), 1031–1075 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Fröhlich, J., Lenzmann, E.: Blowup for nonlinear wave equations describing boson stars. Commun. Pure Appl. Math. 60, 1691–1705 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of Radial Solutions for the Fractional Laplacian. Commun. Pure Appl. Math. 69(9), 1671–1726 (2013)

    MathSciNet  MATH  Google Scholar 

  56. Ghoussoub, N., Gui, C.: On a conjecture of De Giorgi and some related problems. Math. Ann. 311, 481–491 (1998)

    MathSciNet  MATH  Google Scholar 

  57. Ghoussoub, N., Gui, C.: On De Giorgi’s conjecture in dimensions \(4\) and \(5\). Ann. Math. 157(1), 313–334 (2003)

    MathSciNet  MATH  Google Scholar 

  58. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    MathSciNet  MATH  Google Scholar 

  59. Herbst, I.W.: Spectral theory of the operator \((p^{2}+m^{2})^{1/2}-Ze^{2}/r\). Commun. Math. Phys. 53, 285–294 (1977)

    MATH  Google Scholar 

  60. Jin, Q., Li, Y.Y., Xu, H.: Symmetry and asymmetry: the method of moving spheres. Adv. Diff. Equ. 13(7), 601–640 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10(1), 43–64 (2007)

    MathSciNet  MATH  Google Scholar 

  62. Lenzmann, E.: Uniqueness of ground states for pseudo-relativistic Hartree equations. Anal. PDE 2(1), 1–27 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Lieb, E.H.: The stability of matter: from atoms to stars. Bull. Am. Math. Soc. (N.S.) 22, 1–49 (1990)

    MathSciNet  MATH  Google Scholar 

  64. Li, C.: Local asymptotic symmetry of singular solutions to nonlinear elliptic equations. Invent. Math. 123(2), 221–231 (1996)

    MathSciNet  MATH  Google Scholar 

  65. Li, Y.Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6, 153–180 (2004)

    MathSciNet  MATH  Google Scholar 

  66. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in \({\mathbb{R}}^{n}\). Comment. Math. Helv. 73, 206–231 (1998)

    MathSciNet  MATH  Google Scholar 

  67. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  68. Lefter, C., Rădulescu, V.D.: On the Ginzburg–Landau energy with weight. Ann. Inst. H. Poincaré Anal. Non Linéaire 13(2), 171–184 (1996)

    MathSciNet  MATH  Google Scholar 

  69. Lieb, E.H., Thirring, W.E.: Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. 155, 494–512 (1984)

    MathSciNet  Google Scholar 

  70. Lieb, E.H., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112, 147–174 (1987)

    MathSciNet  MATH  Google Scholar 

  71. Li, Y.Y., Zhu, M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80, 383–417 (1995)

    MathSciNet  MATH  Google Scholar 

  72. Li, Y.Y., Zhang, L.: Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. J. Anal. Math 90, 27–87 (2003)

    MathSciNet  MATH  Google Scholar 

  73. Molica Bisci, G.: Variational and Topological Methods for Nonlocal Fractional Periodic Equations. Recent Developments in the Nonlocal Theory, De Gruyter (2018); https://doi.org/10.1515/9783110571561-012

  74. Molica Bisci, G., Rădulescu, V.D.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Diff. Equ. 54(3), 2985–3008 (2015)

    MATH  Google Scholar 

  75. Molica Bisci, G., Rădulescu, V.D.: Multiplicity results for elliptic fractional equations with subcritical term. NoDEA Nonlinear Diff. Equ. Appl. 22(4), 721–739 (2015)

    MathSciNet  MATH  Google Scholar 

  76. Molica Bisci, G., Rădulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and its Applications, 162 Cambride University Press, Cambride

  77. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    MathSciNet  MATH  Google Scholar 

  78. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Rational Mech. Anal. 195(2), 455–467 (2010)

    MathSciNet  MATH  Google Scholar 

  79. Padilla, P.: On some nonlinear elliptic equations. Thesis, Courant Institute (1994)

  80. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis-Theory and Methods. Springer Monographs in Mathematics. Springer, Cham (2019)

    MATH  Google Scholar 

  81. Savin, O.: Regularity of flat level sets in phase transitions. Ann. Math. 169, 41–78 (2009)

    MathSciNet  MATH  Google Scholar 

  82. Serrin, J.: A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43, 304–318 (1971)

    MathSciNet  MATH  Google Scholar 

  83. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    MathSciNet  MATH  Google Scholar 

  84. Weder, R.: Spectral properties of one-body relativistic spin-zero Hamiltonians. Ann. Inst. H. Poincaré Sect. A (N.S.) 20, 211–220 (1974)

    MathSciNet  MATH  Google Scholar 

  85. Weder, R.: Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20(4), 319–337 (1975)

    MathSciNet  MATH  Google Scholar 

  86. Wu, D.: Mass concentration phenomenonm for inhomogeneous fractional Hartree equations. J. Math. Phys. 55, 20 (2014)

    MATH  Google Scholar 

  87. Wu, D.: Existence and stability of standing waves for nonlinear fractional Schrödinger equations with Hartree type nonlinearity. J. Math. Anal. Appl. 411(2), 530–542 (2014)

    MathSciNet  MATH  Google Scholar 

  88. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading and valuable comments and suggestions that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wei Dai is supported by the NNSF of China (No. 11971049) and the Fundamental Research Funds for the Central Universities. Dan Wu was supported by the NSFC (Grant No. 11901183), NSF of Hunan Province (No. 2017JJ3028) and Young Teachers Program of Hunan University (531118040104).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Qin, G. & Wu, D. Direct Methods for Pseudo-relativistic Schrödinger Operators. J Geom Anal 31, 5555–5618 (2021). https://doi.org/10.1007/s12220-020-00492-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00492-1

Keywords

Mathematics Subject Classification

Navigation