Skip to main content
Log in

Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we define a class of fractional Orlicz–Sobolev spaces on Carnot groups, and in the spirit of the celebrated results of Bourgain–Brezis–Mironescu and of Maz’ya–Shaposhnikova, we study the asymptotic behaviour of the Orlicz functionals when the fractional parameter goes to 1 and 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., De Philippis, G., Martinazzi, L.: \(\Gamma \)-convergence of nonlocal perimeter functionals. Manuscripta Math. 134, 377–403 (2011)

    Article  MathSciNet  Google Scholar 

  2. Barbieri, D.: Approximations of Sobolev norms in Carnot groups. Commun. Contemp. Math. 13(5), 765–794 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer, New York (2007)

    MATH  Google Scholar 

  4. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces, in optimal control and partial differential equations. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) A Volume in Honor of Professor Alain Bensoussan’s 60th Birthday, pp. 439–455. IOS Press, Amsterdam (2001)

    Google Scholar 

  5. Brezis, H.: How to recognize constant functions. Connections with Sobolev spaces. Rus. Math. Surv. 57, 693–708 (2002)

  6. Brezis, H.: New approximations of the total variation and filters in imaging. Rend Accad. Lincei 26, 223–240 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Brezis, H., Nguyen, H.-M.: The BBM formula revisited. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27, 515–533 (2016)

  8. Brezis, H., Nguyen, H.-M.: Two subtle convex nonlocal approximations of the BV-norm. Nonlinear Anal. 137, 222–245 (2016)

    Article  MathSciNet  Google Scholar 

  9. Brezis, H., Nguyen, H.-M.: Non-local functionals related to the total variation and connections with image processing. Ann. PDE 4(1), 9 (2018)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L., Valdinoci, E.: Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv. Math. 248, 843–871 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cui, X., Lam, N., Lu, G.: New characterizations of Sobolev spaces in the Heisenberg group. J. Funct. Anal. 267, 2962–2994 (2014)

    Article  MathSciNet  Google Scholar 

  12. Cygan, J.: Subadditivity of homogeneous norms on certain nilpotent Lie groups. Proc. Am. Math. Soc. 83, 69–70 (1981)

    Article  MathSciNet  Google Scholar 

  13. Davila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15, 519–527 (2002)

    Article  MathSciNet  Google Scholar 

  14. Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

    Book  Google Scholar 

  15. Dipierro, S., Figalli, A., Palatucci, G., Valdinoci, E.: Asymptotics of the s-perimeter as \(s \rightarrow 0\). Discret. Contin. Dyn. Syst. 33, 2777–2790 (2013)

    Article  MathSciNet  Google Scholar 

  16. Fernández Bonder, J., Salort, A.M.: Magnetic Fractional order Orlicz-Sobolev spaces, preprint arXiv:1812.05998

  17. Fernández Bonder, J., Salort, A.M.: Fractional order Orlicz-Sobolev spaces. J. Funct. Anal. 277(2), 333–367 (2019)

  18. Ferrari, F., Franchi, B.: Harnack inequality for fractional sub-Laplacians in Carnot groups. Math. Zeitschrift 279(1–2), 435–458 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ferrari, F., Miranda, M., Pallara, D., Pinamonti, A., Sire, Y.: Fractional Laplacians, perimeters and heat semigroups in Carnot groups. Discret. Contin. Dyn. Syst. 11(3), 477–491 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)

  21. Franchi, B., Serapioni, R.P., Serra Cassano, F.: Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321(3), 479–531 (2001)

    Article  MathSciNet  Google Scholar 

  22. Franchi, B., Serapioni, R.P., Serra Cassano, F.: On the structure of finite perimeter sets in step 2 Carnot groups. J. Geom. Anal. 13(3), 421–466 (2003)

    Article  MathSciNet  Google Scholar 

  23. Harjulehto, P., Hästö, P., Klén, R.: Basic properties of generalized Orlicz spaces. Citeseer (2015)

  24. Krasnosel’skiĭ, M.A., Rutickiĭ, Ya.B.: Convex Functions and Orlicz Spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd. Groningen (1961)

  25. Kreum, A., Mordhorst, O.: Fractional Sobolev norms and BV functions on manifolds. Nonlinear Anal. 187, 450–466 (2019)

    Article  MathSciNet  Google Scholar 

  26. Leoni, G., Spector, D.: Characterization of Sobolev and BV spaces. J. Funct. Anal. 261, 2926–2958 (2011)

    Article  MathSciNet  Google Scholar 

  27. Leoni, G., Spector, D.: Corrigendum to characterization of Sobolev and BV spaces. J. Funct. Anal. 266, 1106–1114 (2014)

    Article  MathSciNet  Google Scholar 

  28. Ludwig, M.: Anisotropic fractional Sobolev norms. Adv. Math. 252, 150–157 (2014)

    Article  MathSciNet  Google Scholar 

  29. Ludwig, M.: Anisotropic fractional perimeters. J. Differ. Geom. 96, 77–93 (2014)

    Article  MathSciNet  Google Scholar 

  30. Luxemburg, W.A.J.: Banach function spaces. Thesis, Technische Hogeschool TU Delft (1955)

    MATH  Google Scholar 

  31. Maalaoui, A., Pinamonti, A.: Interpolations and fractional Sobolev spaces in Carnot groups. Nonlinear Anal. 179, 91–104 (2019)

    Article  MathSciNet  Google Scholar 

  32. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230–238 (2002)

    Article  MathSciNet  Google Scholar 

  33. Molica Bisci, G., Repovš, D.: Gradient-type systems on unbounded domains of the Heisenberg group. J. Geom. Anal. (2019). https://doi.org/10.1007/s12220-019-00276-2

    Article  MATH  Google Scholar 

  34. Nguyen, H.-M.: Some new characterizations of Sobolev spaces. J. Funct. Anal. 237, 689–720 (2006)

    Article  MathSciNet  Google Scholar 

  35. Nguyen, H.-M.: Further characterizations of Sobolev spaces. J. Eur. Math. Soc. 10, 191–229 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Nguyen, H.-M.: \(\Gamma \)-convergence, Sobolev norms, and BV functions. Duke Math. J. 157, 495–533 (2011)

    Article  MathSciNet  Google Scholar 

  37. Nguyen, H.-M.: Some inequalities related to Sobolev norms. Calc. Var. Partial Differ. Equ. 41, 483–509 (2011)

    Article  MathSciNet  Google Scholar 

  38. Nguyen, H.-M., Pinamonti, A., Squassina, M., Vecchi, E.: Some characterizations of magnetic Sobolev spaces, to appear Complex Variables Elliptic Equ. https://doi.org/10.1080/17476933.2018.1520850

  39. Nguyen, H.-M., Pinamonti, A., Squassina, M., Vecchi, E.: New characterizations of magnetic Sobolev spaces. Adv. Nonlinear Anal. 7(2), 227–245 (2018)

    Article  MathSciNet  Google Scholar 

  40. Pansu, P.: Métriques de Carnot–Carathéodory et quasi isométries des espaces symétriques de rang un. Ann. Math. 129(2), 1–60 (1989)

    Article  MathSciNet  Google Scholar 

  41. Pick, L., Kufner, A., John, O., Fučík, S.: Function spaces. vol. 1, De Gruyter Series in Nonlinear Analysis and Applications 129(14), xvi+479 (2013)

  42. Pinamonti, A., Squassina, M., Vecchi, E.: The Maz’ya–Shaposhnikova limit in the magnetic setting. J. Math. Anal. Appl. 449(2), 1152–1159 (2017)

    Article  MathSciNet  Google Scholar 

  43. Pinamonti, A., Squassina, M., Vecchi, E.: Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula. Adv. Calc. Var. 12(3), 225–252 (2019)

    Article  MathSciNet  Google Scholar 

  44. Ponce, A.: A new approach to Sobolev spaces and connections to \(\Gamma \)-convergence. Calc. Var. Partial Differ. Equ. 19(3), 229–255 (2004)

    Article  MathSciNet  Google Scholar 

  45. Squassina, M., Volzone, B.: Bourgain–Brezis–Mironescu formula for magnetic operators. C. R. Math. Acad. Sci. Paris 354, 825–831 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maione.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M.C. is supported by MIUR, Italy, GNAMPA of INDAM and University of Trento, Italy. A.M. is supported by MIUR, Italy, GNAMPA of INDAM and University of Trento, Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capolli, M., Maione, A., Salort, A.M. et al. Asymptotic Behaviours in Fractional Orlicz–Sobolev Spaces on Carnot Groups. J Geom Anal 31, 3196–3229 (2021). https://doi.org/10.1007/s12220-020-00391-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00391-5

Keywords

Mathematics Subject Classification

Navigation