Skip to main content
Log in

Quantisation of Extremal Kähler Metrics

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Suppose that a polarised Kähler manifold (XL) admits an extremal metric \(\omega \). We prove that there exists a sequence of Kähler metrics \(\{ \omega _k \}_k\), converging to \(\omega \) as \(k \rightarrow \infty \), each of which satisfies \({\bar{\partial }} \text {grad}^{1,0}_{\omega _k} \rho _k (\omega _k)=0\); the (1, 0)-part of the gradient of the Bergman function is a holomorphic vector field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that this is equivalent to \({\bar{\partial }} \mathrm {grad}_{\omega _H}^{1,0} \rho _k (\omega _H) =0\).

References

  1. Apostolov, V., Huang, H.: A splitting theorem for extremal Kähler metrics. J. Geom. Anal. 25(1), 149–170 (2015). https://doi.org/10.1007/s12220-013-9417-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Arezzo, C., Pacard, F.: Blowing up Kähler manifolds with constant scalar curvature. II. Ann. of Math. (2) 170(2), 685–738 (2009). https://doi.org/10.4007/annals.2009.170.685

    Article  MathSciNet  MATH  Google Scholar 

  3. Arezzo, C., Pacard, F., Singer, M.: Extremal metrics on blowups. Duke Math. J. 157(1), 1–51 (2011). https://doi.org/10.1215/00127094-2011-001

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, R.J., Berndtsson, B.: Convexity of the \(K\)-energy on the space of Kähler metrics and uniqueness of extremal metrics. J. Am. Math. Soc. 30(4), 1165–1196 (2017). https://doi.org/10.1090/jams/880

    Article  MATH  Google Scholar 

  5. Bouche, T.: Inégalités de Morse pour la \(d^{\prime \prime }\)-cohomologie sur une variété holomorphe non compacte. Ann. Sci. École Norm. Sup. (4) 22(4), 501–513 (1989)

    Article  MathSciNet  Google Scholar 

  6. Braun, V., Brelidze, T., Douglas, M.R., Ovrut, B.A.: Calabi-Yau metrics for quotients and complete intersections. J. High Energy Phys. (5) 080, 50 (2008). https://doi.org/10.1088/1126-6708/2008/05/080

    Article  MathSciNet  Google Scholar 

  7. Braun, V., Brelidze, T., Douglas, M.R., Ovrut, B.A.: Eigenvalues and eigenfunctions of the scalar Laplace operator on Calabi-Yau manifolds. J. High Energy Phys. (7) 120, 57 (2008). https://doi.org/10.1088/1126-6708/2008/07/120

    Article  MathSciNet  Google Scholar 

  8. Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, pp. 259–290. Princeton Univ. Press, Princeton (1982)

  9. Calabi, E.: Extremal Kähler metrics. II. In: Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin (1985)

  10. Della Vedova, A., Zuddas, F.: Scalar curvature and asymptotic Chow stability of projective bundles and blowups. Trans. Am. Math. Soc. 364(12), 6495–6511 (2012). https://doi.org/10.1090/S0002-9947-2012-05587-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolgachev, I.: Lectures on Invariant Theory. London Mathematical Society. Lecture Note Series, vol. 296. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511615436

    Book  Google Scholar 

  12. Donaldson, S.K.: Remarks on gauge theory, complex geometry and 4-manifold topology. In: Fields Medallists’ Lectures, World Sci. Ser. 20th Century Math., vol. 5, pp. 384–403. World Sci. Publ., River Edge, NJ (1997)

  13. Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59(3), 479–522 (2001)

    Article  MathSciNet  Google Scholar 

  14. Donaldson, S.K.: Scalar curvature and projective embeddings. II. Q. J. Math. 56(3), 345–356 (2005). https://doi.org/10.1093/qmath/hah044

    Article  MathSciNet  MATH  Google Scholar 

  15. Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5(2, Special Issue: In honor of Friedrich Hirzebruch. Part 1), 571–618 (2009). https://doi.org/10.4310/PAMQ.2009.v5.n2.a2

    Article  MathSciNet  MATH  Google Scholar 

  16. Douglas, M.R., Karp, R.L., Lukic, S., Reinbacher, R.: Numerical Calabi-Yau metrics. J. Math. Phys. 49(3), 032,302, 19 (2008). https://doi.org/10.1063/1.2888403

    Article  MathSciNet  MATH  Google Scholar 

  17. Fine, J.: Constant scalar curvature metrics on fibred complex surfaces. Ph.D. thesis, University of London (2004)

  18. Fine, J.: Calabi flow and projective embeddings. J. Differ. Geom. 84(3), 489–523 (2010). (With an appendix by Kefeng Liu and Xiaonan Ma)

    Article  MathSciNet  Google Scholar 

  19. Fine, J.: Quantization and the Hessian of Mabuchi energy. Duke Math. J. 161(14), 2753–2798 (2012). https://doi.org/10.1215/00127094-1813524

    Article  MathSciNet  MATH  Google Scholar 

  20. Fujiki, A.: On automorphism groups of compact Kähler manifolds. Invent. Math. 44(3), 225–258 (1978)

    Article  MathSciNet  Google Scholar 

  21. Futaki, A.: Asymptotic Chow semi-stability and integral invariants. Int. J. Math. 15(9), 967–979 (2004). https://doi.org/10.1142/S0129167X04002612

    Article  MathSciNet  MATH  Google Scholar 

  22. Futaki, A., Mabuchi, T.: Uniqueness and periodicity of extremal Kähler vector fields. In: Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993), Lecture Notes Ser., vol. 18, pp. 217–239. Seoul Nat. Univ., Seoul (1993)

  23. Hashimoto, Y.: Mapping properties of the Hilbert and Fubini–study maps in Kähler geometry. arXiv preprint arXiv:1705.11025, to appear in Ann. Fac. Sci. Toulouse Math. (2017)

  24. Hashimoto, Y.: Relative stability associated to quantised extremal Kähler metrics. J. Math. Soc. Japan 71(3), 861–880 (2019)

    Article  MathSciNet  Google Scholar 

  25. Keller, J., Lukic, S.: Numerical Weil-Petersson metrics on moduli spaces of Calabi-Yau manifolds. J. Geom. Phys. 92, 252–270 (2015). https://doi.org/10.1016/j.geomphys.2015.02.018

    Article  MathSciNet  MATH  Google Scholar 

  26. Kobayashi, S.: Transformation Groups in Differential Geometry. Classics in Mathematics. Springer, Berlin (1995). (Reprint of the 1972 edition)

    Google Scholar 

  27. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. II. Wiley Classics Library. Wiley, New York (1996). (Reprint of the 1969 original, A Wiley-Interscience Publication)

  28. LeBrun, C., Simanca, S.R.: Extremal Kähler metrics and complex deformation theory. Geom. Funct. Anal. 4(3), 298–336 (1994). https://doi.org/10.1007/BF01896244

    Article  MathSciNet  MATH  Google Scholar 

  29. Lichnerowicz, A.: Sur les transformations analytiques des variétés kählériennes compactes. C. R. Acad. Sci. Paris 244, 3011–3013 (1957)

    MathSciNet  MATH  Google Scholar 

  30. Lu, Z.: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Am. J. Math. 122(2), 235–273 (2000)

    Article  MathSciNet  Google Scholar 

  31. Luo, H.: Geometric criterion for Gieseker-Mumford stability of polarized manifolds. J. Differ. Geom. 49(3), 577–599 (1998)

    Article  MathSciNet  Google Scholar 

  32. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, vol. 254. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  33. Mabuchi, T.: An obstruction to asymptotic semistability and approximate critical metrics. Osaka J. Math. 41(2), 463–472 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Mabuchi, T.: Stability of extremal Kähler manifolds. Osaka J. Math. 41(3), 563–582 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Mabuchi, T.: Uniqueness of extremal Kähler metrics for an integral Kähler class. Int. J. Math. 15(6), 531–546 (2004). https://doi.org/10.1142/S0129167X04002429

    Article  MATH  Google Scholar 

  36. Mabuchi, T.: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I. Invent. Math. 159(2), 225–243 (2005). https://doi.org/10.1007/s00222-004-0387-y

    Article  MathSciNet  MATH  Google Scholar 

  37. Mabuchi, T.: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. II. Osaka J. Math. 46(1), 115–139 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Mabuchi, T.: Asymptotics of polybalanced metrics under relative stability constraints. Osaka J. Math. 48(3), 845–856 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Mabuchi, T.: Asymptotic polybalanced kernels on extremal Kähler manifolds. Asian J. Math. 22(4), 647–664 (2018)

    Article  MathSciNet  Google Scholar 

  40. Matsushima, Y.: Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)

    Article  MathSciNet  Google Scholar 

  41. Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, 3rd edn. Springer, Berlin (1994). https://doi.org/10.1007/978-3-642-57916-5

  42. Ono, H., Sano, Y., Yotsutani, N.: An example of an asymptotically Chow unstable manifold with constant scalar curvature. Ann. Inst. Fourier (Grenoble) 62(4), 1265–1287 (2012)

    Article  MathSciNet  Google Scholar 

  43. Phong, D.H., Sturm, J.: Stability, energy functionals, and Kähler-Einstein metrics. Commun. Anal. Geom. 11(3), 565–597 (2003). https://doi.org/10.4310/CAG.2003.v11.n3.a6

    Article  MATH  Google Scholar 

  44. Phong, D.H., Sturm, J.: Scalar curvature, moment maps, and the Deligne pairing. Am. J. Math. 126(3), 693–712 (2004)

    Article  MathSciNet  Google Scholar 

  45. Phong, D.H., Sturm, J.: Lectures on stability and constant scalar curvature. In: Handbook of Geometric Analysis, No. 3, Adv. Lect. Math. (ALM), vol. 14, pp. 357–436. Int. Press, Somerville, MA (2010)

  46. Rawnsley, J.H.: Coherent states and Kähler manifolds. Q. J. Math. Oxford Ser. (2) 28(112), 403–415 (1977)

    Article  Google Scholar 

  47. Ruan, W.D.: Canonical coordinates and Bergmann [Bergman] metrics. Commun. Anal. Geom. 6(3), 589–631 (1998)

    Article  MathSciNet  Google Scholar 

  48. Sano, Y.: Numerical algorithm for finding balanced metrics. Osaka J. Math. 43(3), 679–688 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Sano, Y., Tipler, C.: Extremal metrics and lower bound of the modified K-energy. J. Eur. Math. Soc. (JEMS) 17(9), 2289–2310 (2015). https://doi.org/10.4171/JEMS/557

    Article  MathSciNet  MATH  Google Scholar 

  50. Sano, Y., Tipler, C.: A moment map picture of relative balanced metrics on extremal Kähler manifolds. arXiv preprint arXiv:1703.09458 (2017)

  51. Seyyedali, R.: Relative Chow stability and extremal metrics. Adv. Math. 316, 770–805 (2017). https://doi.org/10.1016/j.aim.2017.06.031

    Article  MathSciNet  MATH  Google Scholar 

  52. Stoppa, J., Székelyhidi, G.: Relative K-stability of extremal metrics. J. Eur. Math. Soc. (JEMS) 13(4), 899–909 (2011). https://doi.org/10.4171/JEMS/270

    Article  MathSciNet  MATH  Google Scholar 

  53. Székelyhidi, G.: Extremal metrics and \(K\)-stability. Bull. Lond. Math. Soc. 39(1), 76–84 (2007). https://doi.org/10.1112/blms/bdl015

    Article  MathSciNet  MATH  Google Scholar 

  54. Székelyhidi, G.: Introduction to Extremal Kähler metrics, Graduate Studies in Mathematics, vol. 152. Amer. Math. Soc, Providence, RI (2014)

    Book  Google Scholar 

  55. Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 32(1), 99–130 (1990)

    Article  Google Scholar 

  56. Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997). https://doi.org/10.1007/s002220050176

    Article  MathSciNet  MATH  Google Scholar 

  57. Tipler, C.: Relative Chow stability and optimal weights. arXiv preprint arXiv:1710.02536 (2017)

  58. Yau, S.T.: Problem section. In: Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, pp. 669–706. Princeton Univ. Press, Princeton (1982)

  59. Yau, S.T.: Nonlinear analysis in geometry. Enseign. Math. (2) 33(1–2), 109–158 (1987)

    MathSciNet  MATH  Google Scholar 

  60. Zelditch, S.: Szegő kernels and a theorem of Tian. Internat. Math. Res. Not. 6, 317–331 (1998). https://doi.org/10.1155/S107379289800021X

    Article  MATH  Google Scholar 

  61. Zhang, S.: Heights and reductions of semi-stable varieties. Compos. Math. 104(1), 77–105 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to his supervisor Jason Lotay and the thesis examiners Joel Fine and Julius Ross for many helpful comments. He acknowledges with pleasure that Lemma 7 and Proposition 2 were pointed out to him by Joel Fine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Hashimoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of this work was carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government programme managed by the French National Research Agency (ANR). Most of this work was carried out when the author was a PhD student at the Department of Mathematics of the University College London, which he thanks for the financial support. This work forms part of the author’s PhD thesis submitted to the University College London.

Appendix A: Some Results on the Lichnerowicz Operator Used in Sect. 3.2

Appendix A: Some Results on the Lichnerowicz Operator Used in Sect. 3.2

Lemma 26

For any \(F \in C^{\infty } (X , {\mathbb {R}})\), there exists \(F_1 \in C^{\infty } (X , {\mathbb {R}})\), \(F_2 \in C^{\infty } (X , {\mathbb {R}})\) such that \({\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } F_1 = F + F_2\) with \({\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } F_2=0\). Moreover, writing \(pr _{\omega }: C^{\infty } (X , {\mathbb {R}}) \twoheadrightarrow \ker {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }\) for the projection associated to the \(L^2\)-orthogonal direct sum decomposition \(C^{\infty } (X, {\mathbb {R}}) \cong im {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } \oplus \ker {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }\), \(F_2\) is in fact \(F_2 = - pr _{\omega } (F)\).

Proof

This is a well-known result, which follows from the self-adjointness and the elliptic regularity of \({\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }\). \(\square \)

Lemma 27

Let \(\{ F_{k} \}\) be a family of smooth functions parametrised by k, converging to a smooth function \(F_{\infty }\) in \(C^{\infty }\) as \(k \rightarrow \infty \), and \((\phi _{1,k} , \dots , \phi _{m,k})\) be smooth functions, each of which converges to a smooth function \(\phi _{i ,\infty }\) as \(k \rightarrow \infty \). Write \(\omega _{(m)} := \omega + \sqrt{-1}\partial {\bar{\partial }}(\sum _{i=1}^m \phi _{i,k} / k^i)\). Let \(pr _{\omega } : C^{\infty } (X , {\mathbb {R}}) \rightarrow \ker {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }\) and \(pr _{(m)} : C^{\infty } (X , {\mathbb {R}}) \rightarrow \ker {\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)}\) be the projection to \(\ker {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }\) and \(\ker {\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)}\), respectively. Then, \(pr _{(m)} F_k\) converges to \(pr _{\omega } F_{\infty }\) in \(C^{\infty }\).

Proof

Note that we can write \({\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)} = {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } + D/k\) for some differential operator D of order at most 4, which depends on \(\omega \) and \((\phi _{1,k} , \dots , \phi _{m,k})\). Since we know that each \(\phi _{i,k}\) converges to a smooth function \(\phi _{i ,\infty }\) in \(C^{\infty }\), the operator norm of D can be controlled by a constant which depends only on \(\omega \) and \((\phi _{1,\infty } , \dots , \phi _{m,\infty })\) but not on k. Thus, \(|| pr _{(m)} F - pr _{\omega }F ||_{C^{\infty }} \rightarrow 0\) for any fixed \(F \in C^{\infty } (X, {\mathbb {R}})\) as \(k \rightarrow \infty \). On the other hand, \(|| pr _{(m)} F_k - pr _{(m)} F_{\infty } ||_{C^{\infty }} \rightarrow 0\) since \(F_k\) converges to \(F_{\infty }\) in \(C^{\infty }\). Combining these estimates,

$$\begin{aligned} || pr _{(m)} F_k - pr _{\omega } F_{\infty } ||_{C^{\infty }} \le || pr _{(m)} ( F_k - F_{\infty } ) ||_{C^{\infty }} + || pr _{(m)} F_{\infty } - pr _{\omega } F_{\infty } ||_{C^{\infty }} \rightarrow 0 \end{aligned}$$

as \(k \rightarrow \infty \). \(\square \)

Lemma 28

Suppose that the following four conditions hold for an arbitrary but fixed \(m \ge 1\).

  1. 1.

    \((\phi _{1,k} , \dots , \phi _{m,k})\) are smooth functions parametrised by k such that each \(\phi _{i,k}\) converges to a smooth function \(\phi _{i ,\infty }\) in \(C^{\infty }\) as \(k \rightarrow \infty \), so that the Kähler metrics \(\omega _{(m)}:= \omega + \sqrt{-1}\partial {\bar{\partial }}( \sum _{i=1}^m \phi _{i,k}/k^i)\) converges to \(\omega \) in \(C^{\infty }\),

  2. 2.

    \(\{ G_k \}\) is a family of smooth functions on X parametrised by k such that it converges to a smooth function \(G_{\infty }\) in \(C^{\infty }\) as \(k \rightarrow \infty \),

  3. 3.

    \(\{ F_k \}\) is another family of smooth functions on X parametrised by k, each of which is the solution to the equation

    $$\begin{aligned} {\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)} F_k = G_k , \end{aligned}$$

    with the minimum \(L^2\)-norm,

  4. 4.

    there exists a smooth function \(F_{\infty }\) which is the solution to the equation

    $$\begin{aligned} {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } F_{\infty } = G_{\infty } \end{aligned}$$

    with the minimum \(L^2\)-norm.

Then \(F_{k}\) converges to \(F_{\infty }\) in \({C^{\infty }}\) as \(k \rightarrow \infty \).

Proof

Consider the equation

$$\begin{aligned} {\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)} (F_{\infty } - F_k) = {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } F_{\infty } + O(1/k) - G_k = G_{\infty } - G_k +O(1/k) \end{aligned}$$

in \(C^{\infty } (X, {\mathbb {R}})\). As before, we use the \(L^2\)-orthogonal direct sum decomposition \(C^{\infty } (X , {\mathbb {R}}) = \ker {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } \oplus im {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }\) (and hence \(im {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } = \ker {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }^{\perp }\)), to write \((F_{\infty } - F_k)^{\perp }\) for the \(\ker {\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)}^{\perp }\)-component of \(F_{\infty } - F_k\). By the standard elliptic estimate, we have

$$\begin{aligned} || (F_{\infty } - F_k)^{\perp } ||_{L^2_{p+4}} \le C_{1,p}(\omega , \{ \phi _{i,k} \}) || G_{\infty } - G_k + O(1/k)||_{L^2_{p}} \rightarrow 0 \end{aligned}$$

Recalling also \(im {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } = \ker {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }^{\perp }\), the hypothesis 4 implies \(F_{\infty } \in \mathrm {im} {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega }\), and hence there exists a function \(F' \in C^{\infty } (X , {\mathbb {R}})\) such that \(F_{\infty } = {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } F'\) with the estimate

$$\begin{aligned} ||F'||_{L^2_{p}} \le C_{2,p} (\omega ) ||F_{\infty }||_{L^2_{p-4}} \end{aligned}$$

following from the standard elliptic regularity. On the other hand,

$$\begin{aligned} F_{\infty } = {\mathcal {D}}_{\omega }^* {\mathcal {D}}_{\omega } F' = {\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)} F' + \frac{1}{k}D(F'), \end{aligned}$$

with some differential operator D of order at most 4 which depends on \(\omega \) and \((\phi _{1,k} , \dots , \phi _{m,k})\). This means that \(F_{\infty } - D(F')/k \in \ker {\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)}^{\perp }\), and hence

$$\begin{aligned} || F_{\infty } - (F_{\infty })^{\perp } ||_{L^2_{p+4}}< ||D(F')||_{L^2_{p+4}}/k&< C_{3,p} (\omega , \{ \phi _{i,k} \} ) ||F'||_{L^2_{p}} /k \\&< C_{4,p} (\omega , \{ \phi _{i,k} \} ) ||F_{\infty }||_{L^2_{p-4}} /k \rightarrow 0 \end{aligned}$$

as \(k \rightarrow \infty \), where we used the fact that \(\phi _{i,k}\) converges to some smooth function as \(k \rightarrow \infty \), so that \(C_4 (\omega , \{ \phi _{i,k} \})\) stays bounded when k goes to infinity. Thus, recalling that \(F_k\) is the solution to \({\mathcal {D}}_{(m)}^* {\mathcal {D}}_{(m)} F_k = G_k\) with the minimum \(L^2\)-norm (implying \((F_k)^{\perp } = F_k\)), we have

$$\begin{aligned} || F_{\infty } -F_k||_{L^2_{p+4}} \le || (F_{\infty } -F_k)^{\perp }||_{L^2_{p+4}} + || F_{\infty } - (F_{\infty })^{\perp }||_{L^2_{p+4}} \rightarrow 0 \end{aligned}$$

as \(k \rightarrow \infty \).

Since the above argument holds for all large enough p, we see that \(F_k\) converges to \(F_{\infty }\) in \(C^{\infty }\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, Y. Quantisation of Extremal Kähler Metrics. J Geom Anal 31, 2970–3028 (2021). https://doi.org/10.1007/s12220-020-00381-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00381-7

Keywords

Navigation