Skip to main content
Log in

Higher Lelong Numbers and Convex Geometry

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove the reversed Alexandrov–Fenchel inequality for mixed Monge–Ampère masses of plurisubharmonic functions, which generalizes a result of Demailly and Pham. As applications to convex geometry, this gives a complex analytic proof of the reversed Alexandrov–Fenchel inequality for mixed covolumes, which generalizes recent results in convex geometry of Kaveh–Khovanskii, Khovanskii–Timorin, Milman–Rotem and Schneider on reversed (or complemented) Brunn–Minkowski and Alexandrov–Fenchel inequalities. Also for toric plurisubharmonic functions in the Cegrell class, we confirm Demailly’s conjecture on the convergence of higher Lelong numbers under the canonical approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åhag, P., Cegrell, U., Pham, H.H.: Monge–Ampère measures on subvarieties. J. Math. Anal. Appl. 423(1), 94–105 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Åhag, P., Cegrell, U., Czyz, R., Pham, H.H.: Monge–Ampère measures on pluripolar sets. J. Math. Pures Appl. 92(6), 613–627 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Berndtsson, B.: Real and Complex Brunn–Minkowski Theory, Analysis and Geometry in Several Complex Variables. Contemporary Mathematics, vol. 681, pp. 1–27. American Mathematical Society, Providence (2017)

    MATH  Google Scholar 

  4. Błocki, Z.: The domain of definition of the complex Monge–Ampère operator. Am. J. Math. 128(2), 519–530 (2006)

    MATH  Google Scholar 

  5. Boucksom, S., Favre, C., Jonsson, M.: Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci. 44(2), 449–494 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Burago, D., Zalgaller, V.: Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, vol. 285. Springer, Berlin (1988)

    Google Scholar 

  7. Cegrell, U.: The general definition of the complex Monge–Ampère operator. Ann. Inst. Fourier (Grenoble) 54(1), 159–179 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Cegrell, U.: Convergence in capacity. Can. Math. Bull. 55(2), 242–248 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Demailly, J.-P.: Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité. Acta Math. 159(3–4), 153–169 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Demailly, J.-P.: Regularization of closed positive currents and intersection theory. J. Algebr. Geom. 1(3), 361–409 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Demailly, J.P.: Monge–Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry. University Series in Mathematics, pp. 115–193. Plenum, New York (1993)

    MATH  Google Scholar 

  12. Demailly, J.-P.: Estimates on Monge–Ampère operators derived from a local algebra inequality, Complex analysis and digital geometry, 131–143, Acta University Upsaliensis Skr. Uppsala University C Organ. Hist., 86, Uppsala Universitet (2009)

  13. Demailly, J.-P.: Complex Analytic and Differential Geometry, Self-Published E-Book, Institut Fourier, 455 pp, last version: June 21 (2012)

  14. Demailly, J.-P., Pham, H.H.: A sharp lower bound for the log canonical threshold. Acta Math. 212(1), 1–9 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Demailly, J.-P., Pham, H.H.: A sharp lower bound for the log canonical threshold, Slides of the talk given by J.-P. Demailly at Nordan 2012 Conference (and also at 2012 LMS Durham Symposium on ‘Interactions of birational geometry with other fields’), available at http://www-fourier.ujf-grenoble.fr/~demailly/documents.html

  16. Dinew, S., Guedj, V., Zeriahi, A.: Open problems in pluripotential theory. Complex Var. Elliptic Equ. 61(7), 902–930 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39(3), 355–405 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Gromov, M.: Convex Sets and Kähler Manifolds, Advances in Differential Geometry and Topology, pp. 1–38. World Scientific Publishing, Teaneck (1990)

    MATH  Google Scholar 

  19. Guenancia, H.: Toric plurisubharmonic functions and analytic adjoint ideal sheaves. Math. Z. 271, 1011–1035 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Guedj, V., Zeriahi, A.: Degenerate Complex Monge–Ampère Equations, EMS Tracts in Mathematics, vol. 26. European Mathematical Society, Zürich (2017)

    MATH  Google Scholar 

  21. Hörmander, L.: Notions of Convexity, Progress in Mathematics, vol. 127. Birkhäuser Boston Inc., Boston (1994)

    MATH  Google Scholar 

  22. Kaveh, K., Khovanskii, A.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 1–54 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Kaveh, K., Khovanskii, A.: Convex bodies and multiplicities of ideals. Proc. Steklov Inst. Math. 286, 268–284 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Kaveh, K., Khovanskii, A.: On mixed multiplicities of ideals, arXiv:1310.7979

  25. Khovanskii, A., Timorin, V.: On the theory of coconvex bodies. Discrete Comput. Geom. 52(4), 806–823 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Kiselman, C.: Sur la définition de l’opérateur de Monge–Ampère Complexe, Analyse Complexe, Toulouse. Lecture Notes in Mathematics, vol. 1094, pp. 139–150. Springer, Berlin (1984)

    MATH  Google Scholar 

  27. Lazarsfeld, R.: Positivity in Algebraic Geometry, Ergebnisse der Mathematik und Ihrer Grenzgebiete, pp. 48–49. Springer, Berlin (2004)

    Google Scholar 

  28. Lelong, P.: Mesure de Mahler et calcul de constantes universelles pour les polynômes de n variables. Math. Ann. 299(4), 673–695 (1994)

    MathSciNet  MATH  Google Scholar 

  29. Lelong, P., Rashkovskii, A.: Local indicators for plurisubharmonic functions. J. Math. Pures Appl. 78, 233–247 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Milman, E., Rotem, L.: Complemented Brunn–Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures. Adv. Math. 262, 867–908 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Mustaţǎ, M.: On multiplicities of graded sequences of ideals. J. Algebra 256(1), 229–249 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Rashkovskii, A.: Newton numbers and residual measures of plurisubharmonic functions. Ann. Polon. Math. 75(3), 213–231 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Rashkovskii, A.: Lelong numbers with respect to regular plurisubharmonic weights. Results Math. 39(3–4), 320–332 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Rashkovskii, A.: Total masses of mixed Monge–Ampère currents. Michigan Math. J. 51, 169–185 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Rashkovskii, A.: Analytic approximations of plurisubharmonic singularities. Math. Z. 275(3–4), 1217–1238 (2013)

    MathSciNet  MATH  Google Scholar 

  36. Rashkovskii, A.: Multi-circled singularities, Lelong numbers, and integrability index. J. Geom. Anal. 23(4), 1976–1992 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Rashkovskii, A.: Some problems on plurisubharmonic singularities. Mat. Stud. 45, 104–108 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Rashkovskii, A.: Copolar convexity. Ann. Polon. Math. 120(1), 83–95 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Rees, D., Sharp, R.: On a theorem of B. Teissier on multiplicities of ideals in local rings. J. Lond. Math. Soc. 18(3), 449–463 (1978)

    MathSciNet  MATH  Google Scholar 

  40. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory, Second Expanded Edition. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  41. Schneider, R.: A Brunn–Minkowski theory for coconvex sets of finite volume. Adv. Math. 332, 199–234 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Sibony, N.: Quelques problèmes de prolongement de courants en analyse complexe. Duke Math. J. 52(1), 157–197 (1985)

    MathSciNet  MATH  Google Scholar 

  43. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse, pp. 285–362. Asterisque, Nos. 7 et 8, Soc. Math. France, Paris (1973)

  44. Teissier, B.: Sur une inégalité à la Minkowski pour les multiplicités. Ann. Math. 106(1), 38–44 (1977)

    MATH  Google Scholar 

  45. Teissier, B.: Monomial Ideals, Binomial Ideals, Polynomial Ideals, Trends in Commutative Algebra. Mathematical Sciences Research Institute Publications, pp. 211–246. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  46. Wang, X.: A remark on the Alexandrov–Fenchel inequality. J. Funct. Anal. 274(7), 2061–2088 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Wiklund, J.: Pluricomplex charge at weak singularities, arXiv:math/0510671

Download references

Acknowledgements

We would like to thank Jean-Pierre Demailly and Sébastien Boucksom for interesting discussions regarding Conjecture 1.1, and Kiumars Kaveh, Askold Khovanskii and Vladlen Timorin for answering our questions on their papers. We thank the anonymous referees for helpful comments. This work began when A.R. visited Seoul National University and D.K. visited University of Stavanger and École Polytechnique. We thank these institutions for hospitality and also SRC-GAIA (Center for Geometry and its Applications, based at POSTECH, Korea) for its financial support for these visits through the National Research Foundation of Korea grant No.2011-0030795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dano Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Rashkovskii, A. Higher Lelong Numbers and Convex Geometry. J Geom Anal 31, 2525–2539 (2021). https://doi.org/10.1007/s12220-020-00362-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-020-00362-w

Keywords

Mathematics Subject Classification

Navigation