Skip to main content

Advertisement

Log in

Hardy Inequalities with Best Constants on Finsler Metric Measure Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The paper is devoted to weighted \(L^p\)-Hardy inequalities with best constants on Finsler metric measure manifolds. There are two major ingredients. The first, which is the main part of this paper, is the Hardy inequalities concerned with distance functions in the Finsler setting. In this case, we find that besides the flag curvature, the Ricci curvature together with two non-Riemannian quantities, i.e., reversibility and S-curvature, also play an important role. And we establish the optimal Hardy inequalities not only on non-compact manifolds, but also on closed manifolds. The second ingredient is the Hardy inequalities for Finsler p-sub/superharmonic functions, in which we also investigate the existence of extremals and the Brezis–Vázquez improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Baras, P., Cohen, L.: Complete blow-up after Tmax for the solution of a semilinear heat equation. J. Funct. Anal. 71, 142–174 (1987)

    Article  MathSciNet  Google Scholar 

  2. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemannian-Finsler Geometry. GTM 200. Springer, Berlin (2000)

    Book  Google Scholar 

  3. Berchio, E., Ganguly, D., Grillo, G.: Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space. J. Funct. Anal. 272(4), 1661–1703 (2017)

    Article  MathSciNet  Google Scholar 

  4. Brezis, H., Vázquez, J.-L.: Blow-up solutions of some nonlinear elliptic problems. Revista Mat. Univ. Complutense Madrid 10, 443–469 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Carron, G.: Inégalités de Hardy sur les variétés riemanniennes non-compactes. J. Math. Pures Appl. (9) 76(10), 883–891 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chern, S.S., Shen, Z.: Riemann-Finsler Geometry. World Scientific, Singapore (2005)

    Book  Google Scholar 

  7. Cabré, X., Martel, Y.: Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier. C.R. Acad. Sci. Paris I 329, 973–978 (1999)

    Article  MathSciNet  Google Scholar 

  8. D’Ambrosio, L.: Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV, 451–586 (2005)

    MathSciNet  MATH  Google Scholar 

  9. D’Ambrosio, L., Dipierro, S.: Hardy inequalities on Riemannian manifolds and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(3), 449–475 (2014)

    Article  MathSciNet  Google Scholar 

  10. Davies, E.-B.: A review of Hardy inequalities. Oper. Theory Adv. Appl. 110, 55–67 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Egloff, D.: Uniform Finsler Hadamard manifolds. Ann. Inst. Henri Poincaré 66, 323–357 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Hardy, G., Pólya, G., Littlewood, J.E.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  13. Hebey, E.: Sobolev Spaces on Riemannian Manifolds. Springer, New York (1996)

    Book  Google Scholar 

  14. Huang, L., Kristály, A., Zhao, W.: Sharp uncertainty principles on general Finsler manifolds. arXiv:1811.08697 (2018)

  15. Kristály, A., Repovš, D.: Quantitative Rellich inequalities on Finsler-Hardamard manifolds. Commun. Contemp. Math. 18(6), 17 (2016)

    Article  Google Scholar 

  16. Kristály, A., Rudas, I.: Elliptic problems on the ball endowed with Funk-type metrics. Nonlinear Anal. 119, 199–208 (2015)

    Article  MathSciNet  Google Scholar 

  17. Kristály, A., Szakál, A.: Interpolation between Brezis-Vázquez and Poincaré inequalities on nonnegatively curved spaces: sharpness and rigidities. J. Differ. Equ. 266(10), 6621–6646 (2019)

    Article  Google Scholar 

  18. Li, B., Shen, Z.: On projectively flat fourth root metrics. Can. Math. Bull. 55(1), 138–145 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kombe, I., Özaydin, M.: Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 361(12), 6191–6203 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kombe, I., Özaydin, M.: Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 365(10), 5035–5050 (2013)

    Article  Google Scholar 

  21. Mercaldo, A., Sano, M., Takahshi, F.: Finsler Hardy inequalities. arXiv:1806.04901v2

  22. Ohta, S., Sturm, K.-T.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62(10), 1386–1433 (2009)

    Article  MathSciNet  Google Scholar 

  23. Ohta, S.: Finsler interpolation inequalities. Calc. Var. Partial Differ. Equ. 36, 211–249 (2009)

    Article  MathSciNet  Google Scholar 

  24. Ohta, S.: Optimal transport and Ricci curvature in Finsler geometry. In: Kotani, M., Hino, M., Kumagai, T. (eds.) Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics, vol. 57, pp. 323–342. Mathematical Society of Japan, Tokyo (2010)

    Chapter  Google Scholar 

  25. Ohta, S.: Nonlinear geometric analysis on Finsler manifolds. Eur. J. Math. 3(4), 916–952 (2017)

    Article  MathSciNet  Google Scholar 

  26. Pera, I., Vázquez, J.L.: On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term. Arch. Ration. Mech. Anal. 129, 201–224 (1995)

    Article  MathSciNet  Google Scholar 

  27. Rademacher, H.: Nonreversible Finsler Metrics of Positive Flag Curvature. A Sampler of Riemann-Finsler Geometry, pp. 261–302. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  28. Shen, Z.: Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128(2), 306–328 (1997)

    Article  MathSciNet  Google Scholar 

  29. Shen, Z.: Differential Geometry of Spray and Finsler Spaces. Kluwer, New York (2001)

    Book  Google Scholar 

  30. Shen, Z.: Lectures on Finsler Geometry. World Scientific, Singapore (2001)

    Book  Google Scholar 

  31. Vazquez, J.L.: Domain of existence and blowup for the exponential reaction-diffusion equation. Indiana Univ. Math. J. 48, 677–709 (1999)

    Article  MathSciNet  Google Scholar 

  32. Vazque, J.L., Zuazua, E.: The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)

    Article  MathSciNet  Google Scholar 

  33. Wei, G., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor. J. Differ. Geom. 83, 377–406 (2009)

    Article  MathSciNet  Google Scholar 

  34. Wu, B.Y.: On integral Ricci curvature and topology of Finsler manifolds. Int. J. Math. 23(11), 1250111 (2012). https://doi.org/10.1142/S0129167X1250111X

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, B.Y., Xin, Y.L.: Comparison theorems in Finsler geometry and their applications. Math. Ann. 337(1), 177–196 (2007)

    Article  MathSciNet  Google Scholar 

  36. Yang, Q., Su, D., Kong, Y.: Hardy inequalities on Riemannian manifolds with negative curvature. Commun. Contemp. Math. 16, 1350043 (2014). https://doi.org/10.1142/S0219199713500430

    Article  MathSciNet  MATH  Google Scholar 

  37. Yin, S.: Comparison theorems on Finsler manifolds with weighted Ricci curvature bounded below. Front. Math. China 13(2), 435–448 (2018)

    Article  MathSciNet  Google Scholar 

  38. Yuan, L., Zhao, W., Shen, Y.: Improved Hardy and Rellich inequalities on nonreversible Finsler manifolds. J. Math. Anal. Appl. 458, 1512–1545 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zhao, W., Shen, Y.: A universal volume comparison theorem for Finsler manifolds and related results. Can. J. Math. 65, 1401–1435 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by NNSFC (No. 11761058) and NSFS (No. 19ZR1411700). The author is greatly indebted to Pro. A. Kristály for many useful discussions and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Two Lemmas

Lemma A.1

Let \((M,o,F,\mathrm{d}\mathfrak {m})\), \(\Omega \), \(p,\beta \) be as in Definition 3.5. If u is a globally Lipschitz function on M with compact support in \(\Omega \), then \(u\in D^{1,p}(\Omega ,r^{p+\beta })\).

Proof

Since \(\text {supp}(u)\) is compact, there exist a coordinate covering \(\{(U_k,\phi _k)\}_{k=1}^{N<\infty }\) of \(\text {supp}(u)\) and a constant \(C\ge 1\) such that for each k, \(U_k\subset \subset \Omega \), \(\phi _k(U_k)=\mathbb {B}_{\mathbf {0}}(1)\) and

$$\begin{aligned} C^{-1} \mathrm{d}{{\,\mathrm{vol}\,}}\le \mathrm{d}\mathfrak {m}|_{U_k}\le C \mathrm{d}{{\,\mathrm{vol}\,}},\quad C^{-1}\le \frac{F^*(\omega )}{\Vert \phi ^{-1}_{k*}\omega \Vert }\le C, \quad \text { for any }\omega \in T^*{U_k}\backslash \{0\}, \end{aligned}$$
(A.1)

where \(\mathrm{d}{{\,\mathrm{vol}\,}}\) and \(\Vert \cdot \Vert \) are the Lebesgue measure and the Euclidean norm on the unit ball \(\mathbb {B}_{\mathbf {0}}(1)\), respectively.

Choose a number \(q>1\) such that \(\beta q/({q-1})>-n\) if \(\beta >-n\). By Lemma 3.2 and the construction above, one can easily verify \(\int _{U_k}r^{{\beta q}/({q-1})} d \mathfrak {m}<\infty \) for each k.

On the other hand, let \(\{\eta _k\}\) be a smooth partition of unity subordinate to \(\{U_k\}\). Thus, \((\eta _ku)\circ \phi _k^{-1}\) is a globally Lipschitz function on \(\mathbb {B}_{\mathbf {0}}(1)\) with respect to the Euclidean distance and hence, \((\eta _ku)\circ \phi _k^{-1}\) belongs to the Sobolev space \( W^{1,pq}(\mathbb {B}_{\mathbf {0}}(1))\). Meyers–Serrin’s theorem then yields a sequence \(v_{k_j}\in C_0^\infty (\mathbb {B}_{\mathbf {0}}(1))\) with \(\lim _{j\rightarrow +\infty }\Vert v_{k_j}-(\eta _ku)\circ \phi _k^{-1}\Vert _{W^{1,pq}(\mathbb {B}_{\mathbf {0}}(1))}=0\). Therefore, we have \(v_{k_j}\circ \phi _k\in C^\infty _0(\Omega )\) with \(\text {supp}(v_{k_j}\circ \phi _k)\subset U_k\), which together with the Hölder inequality and (A.1) implies

$$\begin{aligned}&\int _\Omega |v_{k_j}\circ \phi _k-(\eta _ku)|^p r^{\beta } \mathrm{d}\mathfrak {m}\\&\quad \le \left( C\int _{\mathbb {B}_{\mathbf {0}}(1)} |v_{k_j}-(\eta _ku)\circ \phi ^{-1}_k |^{pq} \mathrm{d}{{\,\mathrm{vol}\,}}\right) ^{\frac{1}{q}} \left( \int _{U_k}r^{\frac{\beta q}{q-1}} \mathrm{d}\mathfrak {m}\right) ^{\frac{q-1}{q}}\\&\quad \le C^{\frac{1}{q}}\Vert v_{k_j}-(\eta _ku)\circ \phi _k^{-1}\Vert ^p_{W^{1,pq}(\mathbb {B}_{\mathbf {0}}(1))}\left( \int _{U_k}r^{\frac{\beta q}{q-1}} \mathrm{d}\mathfrak {m}\right) ^{\frac{q-1}{q}}\rightarrow 0, \text { as }j\rightarrow +\infty . \end{aligned}$$

Similarly, one can prove \(\lim _{j\rightarrow +\infty }\int _\Omega F^{*p}(d(v_{k_j}\circ \phi _k)-d(\eta _ku)) r^{\beta +p} \mathrm{d}\mathfrak {m}=0\). Therefore, \(\Vert v_{k_j}\circ \phi _k-(\eta _ku)\Vert _D\rightarrow 0\) and \((\eta _ku)\in D^{1,p}(\Omega ,r^{p+\beta })\). We conclude the proof by \(u=\sum _{k=1}^N(\eta _ku)\). \(\square \)

Lemma A.2

Let \((M,o,F,\mathrm{d}\mathfrak {m})\) be an n-dimensional forward complete PFMMM with \(\mathbf {Ric}_\infty \ge (n-1)K\) and \(\mathbf {S}_o^+\ge -a\), where \(a\ge 0\). Set \(\frac{\pi }{\sqrt{K}}:=+\infty \) if \(K\le 0\). Let (ty) denote the polar coordinate system around o. Then we have

$$\begin{aligned} \Delta t\le (n-1)\frac{\mathfrak {s}'_K(t)}{\mathfrak {s}_K(t)}+a,\quad \mathrm{for}\, \mathrm{any }\, y\in S_oM,\quad 0<t<\min \left\{ i_y, \frac{\pi }{2\sqrt{K}} \right\} , \end{aligned}$$

which implies

$$\begin{aligned} \hat{\sigma }_o(t,y)\le e^{-\tau (y)+at}\mathfrak {s}^{n-1}_{K}(t),\quad \mathrm{for}\,\mathrm{any}\, y\in S_oM,\quad 0<t<\min \left\{ i_y, \frac{\pi }{2\sqrt{K}} \right\} , \end{aligned}$$

where \(\hat{\sigma }_o(t,y)\) is defined as in (2.7) and \(\mathfrak {s}_K(t)\) is the solution of \(f''+K f=0\) with \(f(0)=0\) and \(f'(0)=1\). Hence,

$$\begin{aligned} \mathfrak {m}(B^+_o(r))\le \int _{S_oM}e^{-\tau (y)}\mathrm{d}\nu _o(y)\int _0^{r} e^{at}\mathfrak {s}^{n-1}_{K}(t)\mathrm{d}t, \text { for } 0<r<\min \left\{ i_y, \frac{\pi }{2\sqrt{K}} \right\} . \end{aligned}$$

Proof

The proof is similar to that of Wei and Wylie [33, Theorem 1.1]. First, fix \(y\in S_oM\) and set

$$\begin{aligned} H(t):=\frac{\partial }{\partial t}\log \sqrt{\det g_{\nabla t}}, \ \tau (t):=\tau (\nabla t),\quad \mathbf {S}(t):=\mathbf {S}(\nabla t)=\frac{\mathrm{d}}{\mathrm{d}t}\tau (t). \end{aligned}$$

A standard argument (cf. Wu [34, (4.5)]) yields \(\Delta t=H(t)-\mathbf {S}(t)\) and

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}H\le -\mathbf {Ric}(\nabla t)-\frac{H^2}{n-1}. \end{aligned}$$
(A.2)

Also set \(H_K(t):=(n-1)\frac{\mathfrak {s}'_K(t)}{\mathfrak {s}_K(t)}\). By (A.2), one has

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t}\left( H(t)\mathfrak {s}^2_K(t)\right) \le 2 \mathfrak {s}'_K(t)\mathfrak {s}_K(t)H(t)-\mathfrak {s}^2_K(t)\left( \mathbf {Ric}(\nabla t)+\frac{H^2}{n-1} \right) \\&\quad =-\left( \frac{\mathfrak {s}_K(t) H(t)}{\sqrt{n-1}}-\sqrt{n-1}\,\mathfrak {s}'_K(t) \right) ^2+(n-1)(\mathfrak {s}'_K(t))^2-\mathfrak {s}^2_K(t)\mathbf {Ric}(\nabla t)\\&\quad \le (n-1)(\mathfrak {s}'_K(t))^2-\mathfrak {s}^2_K(t)\left( \mathbf {Ric}_\infty (\nabla t)-\frac{\mathrm{d}}{\mathrm{d}t}\mathbf {S}(t) \right) \\&\quad \le (n-1)(\mathfrak {s}'_K(t))^2-(n-1)K\mathfrak {s}^2_K(t)+\mathfrak {s}^2_K(t)\frac{\mathrm{d}}{\mathrm{d}t}\mathbf {S}(t)\\&\quad =\frac{\mathrm{d}}{\mathrm{d}t}\left( H_K(t)\mathfrak {s}^2_K(t)\right) +\mathfrak {s}^2_K(t)\frac{\mathrm{d}}{\mathrm{d}t}\mathbf {S}(t). \end{aligned}$$

Since \(\mathbf {S}_O\ge -a\), integrating by parts on the above inequality, we get

$$\begin{aligned}&\mathfrak {s}^2_K(t)\Delta t=\mathfrak {s}^2_K(t)(H(t)-\mathbf {S}(t))\le \mathfrak {s}^2_K(t)H_K(t)-\int ^t_0\frac{\mathrm{d}}{\mathrm{d}s}(\mathfrak {s}^2_K(s)) \,\mathbf {S}(s) \mathrm{d}s\nonumber \\&\quad \le \mathfrak {s}^2_K(t)H_K(t)+a\int ^t_0\frac{\mathrm{d}}{\mathrm{d}s}(\mathfrak {s}^2_K(s))\mathrm{d}s=\mathfrak {s}^2_K(t)H_K(t)+a\mathfrak {s}^2_K(t). \end{aligned}$$
(A.3)

Hence, \(\Delta t\le H_K(t)+a\), which implies

$$\begin{aligned} \frac{\partial }{\partial t}\log \hat{\sigma }_o(t,y)=\Delta t\le (n-1)\frac{\mathfrak {s}'_K(t)}{\mathfrak {s}_K(t)}+a=\frac{\partial }{\partial t}\log \left[ e^{at}\mathfrak {s}^{n-1}_K(t) \right] . \end{aligned}$$

Then the estimates of \(\hat{\sigma }_o(t,y)\) and \(\mathfrak {m}(B^+_o(r))\) follow from a standard argument (cf. Zhao et al. [39]). \(\square \)

Remark 6

By a different method, Yin [37] obtained the theorem above in the case when the PFMMM is equipped by the Busemann–Hausdroff measure and satisfies \(\mathbf {Ric}_\infty \ge (n-1)K\) and \(\mathbf {S}_o^+\ge -a\) (\(a>0\)).

Appendix B: Weighted Sobolev Space

Let \((M,o,F,\mathrm{d}\mathfrak {m})\) be an n-dimensional closed reversible PFMMM and set \(r(x):=d_F(o,x)\). Given \(p\in (1,+\infty )\) and \(\beta <-n\) with \(p+\beta >-n\), by Lemma 3.2, we define a norm on \(C^\infty _0(M)=C^\infty (M)\) as

$$\begin{aligned} \Vert u\Vert _{p,\beta }:=\left( \int _{{M}}|u|^p{r}^{p+\beta } \mathrm{d}\mathfrak {m}+\int _{{M}} F^{*p}(d u) {r}^{p+\beta } \mathrm{d}\mathfrak {m}\right) ^{\frac{1}{p}}. \end{aligned}$$

The weighted Sobolev space \(W^{1,p}({M}, {r}^{p+\beta })\) is defined as

$$\begin{aligned} W^{1,p}({M}, {r}^{p+\beta }):=\overline{{C}^\infty _0({M})}^{\Vert \cdot \Vert _{p,\beta }}. \end{aligned}$$

In particular, \(W^{1,p}(M,r^0)=:W^{1,p}(M)\), i.e., the standard Sobolev space in the sense of Hebey [13, Definition 2.1].

We also define the weighted \(L^p\)-space \(L^p(M,r^{p+\beta })\) (resp., \(L^p(TM,r^{p+\beta })\)) as the completion of \(C^\infty (M)\) (resp., \(\Gamma ^\infty (T^*M)\), i.e., the space of the smooth sections of the cotangent bundle) under the norm

$$\begin{aligned} {[}u]_{p,\beta }:=\left( \int _{{M}}|u|^p{r}^{p+\beta } \mathrm{d}\mathfrak {m}\right) ^{\frac{1}{p}} \ \ \left( \text {resp., } [\omega ]_{p,\beta }:=\left( \int _{{M}}F^{*p}(\omega ){r}^{p+\beta } \mathrm{d}\mathfrak {m}\right) ^{\frac{1}{p}} \right) . \end{aligned}$$

And set \(L^p(M):=L^p(M,r^0)\) and \(L^p(TM):=L^p(TM,r^0)\).

Lemma B.1

If \(u\in W^{1,p}({M},{r}^{p+\beta })\), then \(u\in W^{1,1}(M)\). Moreover, the differential \(\varpi \) of u in \(W^{1,p}({M},{r}^{p+\beta })\) is the distributional derivative of u, i.e., \(\varpi \in L^1(TM)\) and

$$\begin{aligned} \int _{{M}} \langle X,\varpi \rangle \mathrm{d}\mathfrak {m}=-\int _{{M}}u {{\,\mathrm{div}\,}}X \mathrm{d}\mathfrak {m},\quad \text { for any smooth vector field }X. \end{aligned}$$

Proof

Since \(({\beta +p})/({1-p})>-n\), Lemma 3.2 implies that \({r}^{\frac{\beta +p}{1-p}}\) is integrable. Given \(f\in L^p({M},{r}^{\beta +p})\), the Hölder inequality yields

$$\begin{aligned} \int _M|f| \mathrm{d}\mathfrak {m}&=\int _M |f|{r}^{\frac{\beta +p}{p}}{r}^{-\frac{\beta +p}{p}}\mathrm{d}\mathfrak {m}\le \left( \int _M |f|^p {r}^{p+\beta }\mathrm{d}\mathfrak {m} \right) ^{\frac{1}{p}}\left( \int _M {r}^{\frac{p+\beta }{1-p}} \mathrm{d}\mathfrak {m} \right) ^{\frac{p-1}{p}}. \end{aligned}$$
(B.1)

Consequently, if \(u\in W^{1,p}({M},{r}^{p+\beta })\), (B.1) implies \(u\in L^{1}({M})\) and its differential \(\varpi \in L^{1}(T{M})\). On the other hand, there exists a sequence \(u_j\in C^\infty _0({M})\) such that \([u_j-u]_{p,\beta }\rightarrow 0\) and \([\mathrm{d}u_j-\varpi ]_{p,\beta }\rightarrow 0\). Thus, for any smooth vector field X, (B.1) together with the compactness of M yields

$$\begin{aligned}&\left| \int _{{M}} \langle X,\varpi \rangle -(-u{{\,\mathrm{div}\,}}X) \mathrm{d}\mathfrak {m} \right| \\&\quad =\left| \int _{{M}} \langle X,\varpi \rangle - \langle X,\mathrm{d}u_j\rangle + \langle X,\mathrm{d}u_j\rangle -(-u{{\,\mathrm{div}\,}}X) \mathrm{d}\mathfrak {m} \right| \\&\quad \le \int _M \left| \langle X, \varpi -\mathrm{d}u_j\rangle \right| \mathrm{d}\mathfrak {m}+ \int _M \left| (u_j-u){{\,\mathrm{div}\,}}X \right| \mathrm{d}\mathfrak {m}\\&\quad \le \max _M F(X) \int _{M}F^*(\varpi -\mathrm{d}u_j)\mathrm{d}\mathfrak {m} +\max _M|{{\,\mathrm{div}\,}}X| \int _{M}|u_j- u|\mathrm{d}\mathfrak {m} \\&\quad \le \left( \max _M F(X)+\max _M|{{\,\mathrm{div}\,}}X|\right) \left( \int _M {r}^{\frac{p+\beta }{1-p}} \mathrm{d}\mathfrak {m} \right) ^{\frac{p-1}{p}}\left( [\varpi -d u_j]_{p,\beta }^p+[u_j -u]_{p,\beta }^p \right) \rightarrow 0. \end{aligned}$$

Furthermore, (B.1) also implies that \(u_j\rightarrow u\) in \(W^{1,1}({M})\) and hence, the lemma follows. \(\square \)

Lemma B.2

If \(u\in W^{1,p}({M},{r}^{\beta +p})\), then \(u_+:=\max \{u,0\}\), \(u_-:=-\min \{u,0\}\) and \(|u|=u_+-u_-\) are all in \(W^{1,p}({M},{r}^{\beta +p})\).

Proof

Since \(u_-=(-u)_+\), it suffices to prove \(u_+\in W^{1,p}({M},{r}^{\beta +p})\). Choose a sufficiently large constant \(q>1\) such that \(\frac{q(\beta +p)}{q-1}>-n\). For any \(f\in L^{pq}(M)\), the Hölder inequality together with Lemma 3.2 yields

$$\begin{aligned} \int _M |f|^p{r}^{\beta +p}\mathrm{d}\mathfrak {m}\le \left( \int _M |f|^{pq} \mathrm{d}\mathfrak {m}\right) ^{\frac{1}{q}} \left( \int _M {r}^{\frac{q(\beta +p)}{q-1}}\mathrm{d}\mathfrak {m}\right) ^{\frac{q-1}{q}}. \end{aligned}$$
(B.2)

First we consider the case when \(u\in C^\infty _0({M})\). The standard theory yields a subsequence \(u_j\in C^\infty _0({M})\) such that \(u_j\rightarrow u_+\) in \(W^{1,pq}({M})\) (cf. Hebey [13, Lemma 2.5]), which together with (B.2) implies \(u_j\rightarrow u_+\) in \(W^{1,p}({M}, {r}^{p+\beta })\). Hence, \(u_+\in W^{1,p}({M}, {r}^{p+\beta })\).

For the general case (i.e., \(u\in W^{1,p}({M},{r}^{\beta +p})\)), choose a sequence \(u_j\in C^\infty _0({M})\) such that \(\Vert u_j- u\Vert _{p,\beta }\rightarrow 0\). From above, we have \(u_{j+}=\max \{u_j,0\}\in W^{1,p}({M}, {r}^{p+\beta })\). Since \(\max \{s,t\}=\frac{1}{2}(s+t-|s-t|)\), the triangle inequality yields \(\Vert u_{j+}-u_+\Vert _{p,\beta }\le \Vert u_j-u\Vert _{p,\beta }\rightarrow 0\). Hence, \(u_+\in W^{1,p}({M},{r}^{\beta +p})\). \(\square \)

Since M is closed, the following result follows from Lemma B.2 directly.

Corollary B.3

Given \(u\in W^{1,p}({M},{r}^{\beta +p})\), then \(u_\epsilon :{=}\max \{u-\epsilon ,0\}\in W^{1,p}({M},{r}^{\beta +p})\), for any \(\epsilon >0\).

Now set \({M_o}:=M\backslash \{o\}\). Define the weighted Sobolev space \(W^{1,p}({M_o},r^{\beta +p})\) as the completion of \(C^\infty _0({M_o})\) with respect to the norm

$$\begin{aligned} \Vert u\Vert _{{M_o},p,\beta }:=\left( \int _{{M_o}}|u|^p{r}^{p+\beta } \mathrm{d}\mathfrak {m}+\int _{{M_o}} F^{*p}(\mathrm{d} u)^p {r}^{p+\beta } \mathrm{d}\mathfrak {m}\right) ^{\frac{1}{p}}. \end{aligned}$$

Lemma B.4

If \(u\in W^{1,p}({M},{r}^{\beta +p})\) with compact support in \({M_o}\), then \(u|_{{M_o}}\in W^{1,p}({M_o},{r}^{\beta +p})\).

Proof

Since \(\text {supp}(u)\subset {M_o}\) is compact, one can choose a cut-off function \(\eta \in C^\infty _0({M})\) such that \(\text {supp}(u)\subsetneqq \text {supp}(\eta )\subset {M_o}\) and \(\eta |_{\text {supp}(u)}=1\).

On the other hand, since \(u\in W^{1,p}({M},{r}^{\beta +p})\), there exists a sequence \(u_i\in C^\infty _0({M})\) with \(\Vert u_i- u\Vert _{p,\beta }\rightarrow 0\). Note that if \(\Vert \eta u_i- \eta u\Vert _{{M_o},p,\beta }\rightarrow 0\), then \(u|_{{M_o}}=\eta u\in W^{1,p}({M_o},{r}^{\beta +p})\) and the lemma follows. Hence, it suffices to show \(\Vert \eta u_i- \eta u\Vert _{{M_o},p,\beta }\rightarrow 0\).

A direct calculation together with the triangle inequality (i.e., \(F^*(\omega _1+\omega _2)\le F^*(\omega _1)+F^*(\omega _2)\)) furnishes

$$\begin{aligned}&\Vert \eta u_i-\eta u\Vert _{{M_o},p,\beta }^p = \int _{\text {supp}\eta }|\eta u_i-\eta u|^p {r}^{\beta +p} \mathrm{d}\mathfrak {m}+\int _{\text {supp}\eta }F^{*p}\left( \mathrm{d}(\eta u_i-\eta u)\right) {r}^{\beta +p}\mathrm{d}\mathfrak {m}\\&\quad \le \int _{{M}}| u_i- u|^p {r}^{\beta +p} \mathrm{d}\mathfrak {m}+2^p\left[ \int _{\text {supp}\eta } F^{*p}\left( (u_i- u)\mathrm{d}\eta \right) {r}^{\beta +p}\mathrm{d}\mathfrak {m}\right. \\&\qquad \left. +\int _{\text {supp}\eta }F^{*p}\left( \eta \mathrm{d}(u_i-u)\right) {r}^{\beta +p}\mathrm{d}\mathfrak {m} \right] \\&\quad \le \int _{{M}}| u_i- u|^p {r}^{\beta +p} \mathrm{d}\mathfrak {m}+2^p\left[ \Vert F^{*p}(\mathrm{d}\eta )\Vert _{\infty }\int _{M} |u_i- u|^p {r}^{\beta +p}\mathrm{d}\mathfrak {m}\right. \\&\qquad \left. +\int _{M}F^{*p}(\mathrm{d}u_i-\mathrm{d}u){r}^{\beta +p}\mathrm{d}\mathfrak {m} \right] \\&\quad \le \left[ 2^p (\Vert F^{*p}(\mathrm{d}\eta )\Vert _{\infty }+1)+1 \right] \Vert u_i-u\Vert _{p,\beta }^p\rightarrow 0. \end{aligned}$$

\(\square \)

Proof of Proposition 3.15

Without loss of generality, we may prove the proposition in the case when \(u\ge 0\). Thus, Lemma B.2 implies \(u=u_+\in W^{1,p}({M}, {r}^{\beta +p})\cap C({M})\).

For each \(\epsilon \in (0,1)\), set \(u_\epsilon (x):=\max \{u-\epsilon ,0\}\). Since u is continuous with \(u(o)=0\), there exists a small \(\delta >0\) such that \(u_\epsilon =0\) in \(B_o(\delta )\), which implies that \(\text {supp}(u_\epsilon )\) is a compact subset of \({M_o}\). Corollary B.3 then yields \(u_\epsilon |_{{M_o}} \in W^{1,p}({M_o},{r}^{\beta +p})\). By a direct calculation, we have

$$\begin{aligned}&\left\| u|_{{M_o}}-u_\epsilon |_{{M_o}}\right\| _{{M_o},p,\beta }^p\\&=\left\| u- u_\epsilon \right\| ^p_{p,\beta }=\int _{{M}}|u-u_\epsilon |^p{r}^{p+\beta } \mathrm{d}\mathfrak {m}\\&\qquad + \int _{{M}} F^{*p}(d (u-u_\epsilon )) {r}^{p+\beta } \mathrm{d}\mathfrak {m}\le \epsilon ^p \int _M {r}^{\beta +p} \mathrm{d}\mathfrak {m}\\&\qquad +\int _{{M}}\chi _{\{0\le u\le \epsilon \}}|u|^p{r}^{\beta +p} \mathrm{d}\mathfrak {m} + \int _{{M}} \chi _{\{0\le u\le \epsilon \}} F^{*p}(\mathrm{d}u) {r}^{p+\beta } \mathrm{d}\mathfrak {m}. \end{aligned}$$

Now the assumption together with the dominated convergence theorem yields

$$\begin{aligned}&\lim _{\epsilon \rightarrow 0^+}\int _{{M}}\chi _{\{0\le u\le \epsilon \}}|u|^p{r}^{\beta +p} \mathrm{d}\mathfrak {m}=\int _{{M}}\lim _{\epsilon \rightarrow 0^+}\chi _{\{0\le u\le \epsilon \}}|u|^p{r}^{\beta +p} \mathrm{d}\mathfrak {m}=0,\\&\lim _{\epsilon \rightarrow 0^+}\int _{{M}} \chi _{\{0\le u\le \epsilon \}} F^{*p}(\mathrm{d}u) {r}^{p+\beta } \mathrm{d}\mathfrak {m}=\int _{{M}} \lim _{\epsilon \rightarrow 0^+}\chi _{\{0\le u\le \epsilon \}} F^{*p}(\mathrm{d}u) {r}^{p+\beta } \mathrm{d}\mathfrak {m}=0, \end{aligned}$$

which imply \(\left\| u|_{{M_o}}-u_\epsilon |_{{M_o}}\right\| _{{M_o},p,\beta }^p\rightarrow 0\) as \(\epsilon \rightarrow 0^+\) and hence, \(u|_{{M_o}}\in W^{1,p}({M_o},{r}^{\beta +p})\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W. Hardy Inequalities with Best Constants on Finsler Metric Measure Manifolds. J Geom Anal 31, 1992–2032 (2021). https://doi.org/10.1007/s12220-019-00330-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00330-z

Keywords

Mathematics Subject Classification

Navigation