Skip to main content
Log in

Stability in the Inverse Steklov Problem on Warped Product Riemannian Manifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the amount of information contained in the Steklov spectrum of some compact manifolds with connected boundary equipped with a warped product metric. Examples of such manifolds can be thought of as deformed balls in \({\mathbb {R}}^d\). We first prove that the Steklov spectrum determines uniquely the warping function of the metric. We show in fact that the approximate knowledge (in a given precise sense) of the Steklov spectrum is enough to determine uniquely the warping function in a neighbourhood of the boundary. Second, we provide stability estimates of log-type on the warping function from the Steklov spectrum. The key element of these stability results relies on a formula that, roughly speaking, connects the inverse data (the Steklov spectrum) to the Laplace transform of the difference of the two warping factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Observe that the condition \(u \in H^1(M)\) can be written in terms of \(v_k\) (after separation of variables) as

    $$\begin{aligned} \sum _{k=0}^\infty \int _0^{+\infty } \left[ f^4(x)|v_k|^2 + \mu _k |v_k|^2 + f^{2d-4}(x) |(f^{2-d} v_k)'|^2 \right] dx < \infty . \end{aligned}$$

    We refer to [7] for the details of a similar calculation. Hence, for \(k \ge 1\), we see that \(v_k \in L^2\) from the second term under the integral. For \(k=0\), we can use the third term under the integral to prove that \(v_0 \in L^2\).

References

  1. Alessandrini, G.: Stable determination of conductivity by boundary measurements. Appl. Anal. 27, 153–172 (1988)

    Article  MathSciNet  Google Scholar 

  2. Ang, D.D., Gorenflo, R., Le, V.K., Trong, D.D.: Moment theory and some inverse problems in potential theory and heat conduction. Lecture Notes in Mathematics 1792, (2002)

  3. Bennewitz, C.: A proof of the local Borg–Marchenko theorem. Commun. Math. Phys. 211, 131–132 (2001)

    Article  MathSciNet  Google Scholar 

  4. Berezin, A., Shubin, M.A.: The Schrödinger Equation. Kluwer, Dordrecht (1991)

    Book  Google Scholar 

  5. Boas, R.P.: Entire Functions. Academic Press, New York (1954)

    MATH  Google Scholar 

  6. Danielyan, A.A., Levitan, B.M.: Asymptotic behavior of the Weyl–Titchmarsh \(m\)-function. Math. USSR Izv 36, 487–496 (1991)

    Article  MathSciNet  Google Scholar 

  7. Daudé, T., Kamran, N., Nicoleau, F.: The anisotropic Calderón problem for singular metric of warped product type: the borderline between uniqueness and invisibility, to appear in Journal of Spectral Theory, (2018), ArXiv:1805.05627

  8. Daudé, T., Kamran, N., Nicoleau, F.: Non uniqueness results in the anisotropic Calderón problem with Dirichlet and Neumann data measured on disjoint sets. Ann. l’Institut Fourier 69(1), 119–170 (2019). (2019)

    Article  MathSciNet  Google Scholar 

  9. Daudé, T., Kamran, N., Nicoleau, F.: On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets. Ann. Henri Poincaré 20(3), 859–887 (2019)

    Article  MathSciNet  Google Scholar 

  10. Eckhardt, J., Teschl, G.: Uniqueness results for Schrödinger operators on the line with purely discrete spectra. Trans. Am. Math. Soc. 365, 3923–3942 (2013)

    Article  Google Scholar 

  11. Gendron, G.: Uniqueness results in the inverse spectral Steklov problem, arXiv: 1909.12560

  12. Gesztesy, F., Simon, B.: A new approach of inverse spectral theory II. General potentials and the connection to the spectral measure. Ann. Math. 152, 593–643 (2000)

    Article  MathSciNet  Google Scholar 

  13. Gesztesy, F., Simon, B.: On local Borg–Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)

    Article  MathSciNet  Google Scholar 

  14. Girouard, A., Parnovski, L., Polterovich, I., Sher, D.: The Steklov spectrum of surfaces: asymptotics and invariants. Math. Proc. Camb. Philos. Soc 157(3), 379–389 (2014)

    Article  MathSciNet  Google Scholar 

  15. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov spectrum. J. Spectr. Theory 7(2), 321–359 (2017)

    Article  MathSciNet  Google Scholar 

  16. Hislop, P., Lutzer, C.: Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in \({\mathbb{R }}^d\). Inverse Probl. 17(6), 1717–1741 (2001)

    Article  Google Scholar 

  17. Horvath, M.: Inverse scattering with fixed energy and an inverse eigenvalue problem on the half-line. Trans. Am. Math. Soc. 358(11), 5161–5177 (2006)

    Article  MathSciNet  Google Scholar 

  18. Horvath, M.: Partial identification of the potential from phase shifts. J. Math. Anal. Appl. 380(2), 726–735 (2011)

    Article  MathSciNet  Google Scholar 

  19. Jollivet, A., Sharafutdinov, V.: On an inverse problem for the Steklov spectrum of a Riemannian surface. Contemp. Math. 615, 165–191 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kostenko, A., Sakhnovich, A., Teschl, G.: Weyl–Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. 2012, 1699–1747 (2012)

    MATH  Google Scholar 

  21. Lorentz, G.G., Golitschek, M., Makovoz Y.: Constructive Approximation. A Series of Comprehensive Studies in Mathematics, vol. 304 (1996)

  22. Marchenko, V.A.: Sturm–Liouville Operators and Their Applications. Naoukova Dumka, Kiev (1977)

    MATH  Google Scholar 

  23. Novikov, R.G.: New global stability estimates for the Gelfand–Calderón inverse problem. Inverse Probl. 27(1), 015001 (2011)

    Article  Google Scholar 

  24. Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics, vol. 171, 3rd edn. Springer, New York (2016)

    Book  Google Scholar 

  25. Reed, M., Simon, B.: Methods of Modern Mathematical Physics—Scattering Theory. Academic Press, New York (1978)

    MATH  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Modern Mathematical Physics—Analysis of Operator, vol. 4. Academic Press, New York (1978)

    MATH  Google Scholar 

  27. Salo, M.: The Calderón Problem on Riemannian Manifolds, Inverse Problems and Applications: Inside Out. II. In: Math. Sci. Res. Inst. Publ., vol. 60, pp. 167–247. Cambridge Univ. Press, Cambridge (2013)

  28. Safarov, Y., Vassiliev, D.: The asymptotic distribution of eigenvalues of partial differential operators. Translated from the Russian manuscript by the authors. Translations of Mathematical Monographs 155, American Mathematical Society, Providence, RI, pp xiv+354 (1997)

  29. Simon, B.: A new approach to inverse spectral theory, I. Fundamental formalism. Ann. Math. 150, 1029–1057 (1999)

    Article  MathSciNet  Google Scholar 

  30. Taylor, M.: Partial Differential Equations, I. Basic theory, Applied Mathematical Sciences, vol. 115. Springer, New York (2011)

    Book  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees for their careful reading and constructive suggestions. Thierry Daudé’s research is supported by the JCJC French National Research Projects Horizons, No. ANR-16-CE40-0012-01, Niky Kamran’s research is supported by NSERC grant RGPIN 105490-2018 and Francois Nicoleau’s research is supported by the French National Research Project GDR Dynqua.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Nicoleau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thierry Daudé: Research supported by the French National Research Projects AARG, No. ANR-12-BS01-012-01, and Iproblems, No. ANR-13-JS01-0006.

Niky Kamran: Research supported by NSERC grant RGPIN 105490-2011.

François Nicoleau: Research supported by the French GDR Dynqua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daudé, T., Kamran, N. & Nicoleau, F. Stability in the Inverse Steklov Problem on Warped Product Riemannian Manifolds. J Geom Anal 31, 1821–1854 (2021). https://doi.org/10.1007/s12220-019-00326-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00326-9

Keywords

Mathematics Subject Classification

Navigation