Skip to main content
Log in

Negative-Type Diversities, a Multi-dimensional Analogue of Negative-Type Metrics

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Diversities are a generalization of metric spaces in which a non-negative value is assigned to all finite subsets of a set, rather than just to pairs of points. Here we provide an analogue of the theory of negative-type metrics for diversities. We introduce negative-type diversities, and show that, as in the metric space case, they are a generalization of \(L_1\)-embeddable diversities. We provide a number of characterizations of negative-type diversities, including a geometric characterization. Much of the recent interest in negative-type metrics stems from the connections between metric embeddings and approximation algorithms. We extend some of this work into the diversity setting, showing that lower bounds for embeddings of negative-type metrics into \(L_1\) can be extended to diversities by using recently established extremal results on hypergraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M.: Combinatorial Theory. Springer, New York (2012)

    MATH  Google Scholar 

  2. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the sparsest cut. J. Am. Math. Soc. 21(1), 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  3. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. J. ACM 56(2), 5 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math. 52(1), 46–52 (1985)

    Article  MathSciNet  Google Scholar 

  5. Brouwer, A.E., Haemers, W.H.: Distance-regular graphs. In: Spectra of Graphs, pp. 177–185. Springer (2012)

  6. Bryant, D., Tupper, P.F.: Hyperconvexity and tight-span theory for diversities. Adv. Math. 231(6), 3172–3198 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bryant, D., Tupper, P.F.: Diversities and the Geometry of Hypergraphs. Discret. Math. Theoret. Comput. Sci. 16 (2014)

  8. Bryant, D., Tupper, P.F.: Constant distortion embeddings of symmetric diversities. Anal. Geom. Metr. Spaces 4(1), 326–335 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bryant, D., Tupper, P.F.: Open problem statement: Minimal distortion embeddings of diversities in \(\ell _1\). arXiv:1712.01960 (2017)

  10. Bryant, D., Nies, A., Tupper, P.: A universal separable diversity. Anal. Geom. Metr. Spaces 5(1), 138–151 (2018)

    Article  MathSciNet  Google Scholar 

  11. Christofides, D., Ellis, D., Keevash, P.: An approximate isoperimetric inequality for \(r\)-sets. Electron. J. Comb. 20(4), 15 (2013)

    Article  MathSciNet  Google Scholar 

  12. Deza, M., Laurent, M.: Geometry of cuts and metrics. Book 15, xii+587 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Espínola, R., Pia̧tek, B.: Diversities, hyperconvexity and fixed points. Nonlinear Anal. 95, 229–245 (2014)

    Article  MathSciNet  Google Scholar 

  14. Khot, S.A., Vishnoi, N.K.: The unique games conjecture, integrality gap for cut problems and embeddability of negative-type metrics into \(L_1\). J. ACM (JACM) 62(1), 8 (2015)

    Article  Google Scholar 

  15. Kirk, W., Shahzad, N.: Diversities. In: Fixed Point Theory in Distance Spaces, pp. 153–158. Springer (2014)

  16. Krauthgamer, R., Rabani, Y.: Improved lower bounds for embeddings into \(l_1\). SIAM J. Comput. 38(6), 2487–2498 (2009)

    Article  MathSciNet  Google Scholar 

  17. Krauthgamer, R., Lee, J.R., Mendel, M., Naor, A.: Measured descent: a new embedding method for finite metrics. Geom. Funct. Anal. 15(4), 839–858 (2005)

    Article  MathSciNet  Google Scholar 

  18. Lee, J.R., Naor, A.: Extending Lipschitz functions via random metric partitions. Invent. Math. 160(1), 59–95 (2005)

    Article  MathSciNet  Google Scholar 

  19. Lee, J.R., Mendel, M., Naor, A.: Metric structures in \(L_1\): dimension, snowflakes, and average distortion. Eur. J. Comb. 26(8), 1180–1190 (2005)

    Article  Google Scholar 

  20. Li, H., Weston, A.: Strict p-negative type of a metric space. Positivity 14(3), 529–545 (2010)

    Article  MathSciNet  Google Scholar 

  21. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MathSciNet  Google Scholar 

  22. Naor, A., Young, R.: The integrality gap of the Goemans–Linial SDP relaxation for sparsest cut is at least a constant multiple of \(\sqrt{\log n}\). In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pp. 564–575. New York, NY, USA. ACM (2017)

  23. Piatek, B.: On the gluing of hyperconvex metrics and diversities. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 13(1), 65–76 (2014)

    Article  MathSciNet  Google Scholar 

  24. Poelstra, A.: On the topological and uniform structure of diversities. J. Funct. Spaces Appl. (2013)

  25. Sánchez, S.: Additive combination spaces. Positivity 19(2), 395–417 (2015)

    Article  MathSciNet  Google Scholar 

  26. Schoenberg, I.J.: Remarks to maurice frechet’s article“sur la definition axiomatique d’une classe d’espace distances vectoriellement applicable sur l’espace de hilbert. Ann. Math. 36, 724–732 (1935)

    Article  MathSciNet  Google Scholar 

  27. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)

    Article  MathSciNet  Google Scholar 

  28. Wolf, R.: On the gap of finite metric spaces of \(p\)-negative type. Linear Algebra Appl. 436(5), 1246–1257 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bryant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Bryant, D. & Tupper, P. Negative-Type Diversities, a Multi-dimensional Analogue of Negative-Type Metrics. J Geom Anal 31, 1703–1720 (2021). https://doi.org/10.1007/s12220-019-00321-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00321-0

Keywords

Mathematics Subject Classification

Navigation