Skip to main content

On Fully Diverse Sets of Geometric Objects and Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Abstract

Diversity is a property of sets that shows how varied or different its elements are. We define full diversity in a metric space and study the maximum size of fully diverse sets. A set is fully diverse if each pair of elements is as distant as the maximum possible distance between any pair, up to a constant factor. We study metric spaces based on geometry, embeddings of graphs, and graphs themselves. In the geometric cases, we study measures like Hausdorff distance, Frechét distance, and area of symmetric difference between objects in a bounded region. In the embedding cases, we study planar embeddings of trees and planar graphs, and use the number of swaps in the rotation system as the metric. In the graph cases, we use the number of insertions and deletions of leaves or edges as the metric. In most cases, we show (almost) tight lower and upper bounds on the maximum size of fully diverse sets. Our results lead to a very simple randomized algorithm to generate large fully diverse sets in several cases.

Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.651 and the Austrian Science Foundation (FWF) grant J4510.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://adamsheffer.wordpress.com/numbers-of-plane-graphs/.

References

  1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995). https://doi.org/10.1142/S0218195995000064

    Article  MATH  Google Scholar 

  2. Bach, B., Spritzer, A., Lutton, E., Fekete, J.-D.: Interactive random graph generation with evolutionary algorithms. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 541–552. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36763-2_48

    Chapter  MATH  Google Scholar 

  3. Baste, J., et al.: Diversity of solutions: an exploration through the lens of fixed-parameter tractability theory. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 1119–1125 (2020). https://doi.org/10.24963/ijcai.2020/156

  4. Battista, G.D., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996). https://doi.org/10.1137/S0097539794280736

    Article  MathSciNet  MATH  Google Scholar 

  5. Biedl, T., Marks, J., Ryall, K., Whitesides, S.: Graph multidrawing: finding nice drawings without defining nice. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 347–355. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_26

    Chapter  Google Scholar 

  6. Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., Schaeffer, G.: Planar graphs, via well-orderly maps and trees. Graphs Combin. 22(2), 185–202 (2006). https://doi.org/10.1007/s00373-006-0647-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Bridgeman, S., Tamassia, R.: Difference metrics for interactive orthogonal graph drawing algorithms. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 57–71. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_5

    Chapter  MATH  Google Scholar 

  8. Cai, J.: Counting embeddings of planar graphs using DFS trees. SIAM J. Discret. Math. 6(3), 335–352 (1993). https://doi.org/10.1137/0406027

    Article  MathSciNet  MATH  Google Scholar 

  9. Drosou, M., Jagadish, H.V., Pitoura, E., Stoyanovich, J.: Diversity in big data: a review. Big Data 5(2), 73–84 (2017). https://doi.org/10.1089/big.2016.0054

    Article  Google Scholar 

  10. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  11. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar solutions in constraint programming. In: Proceedings of 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 372–377 (2005)

    Google Scholar 

  12. Hill, M.O.: Diversity and evenness: a unifying notation and its consequences. Ecology 54(2), 427–432 (1973). https://doi.org/10.2307/1934352

    Article  Google Scholar 

  13. Huemer, C., Pilz, A., Silveira, R.I.: A new lower bound on the maximum number of plane graphs using production matrices. Comput. Geom. 84, 36–49 (2019). https://doi.org/10.1016/j.comgeo.2019.07.005

    Article  MathSciNet  MATH  Google Scholar 

  14. Ingmar, L., de la Banda, M.G., Stuckey, P.J., Tack, G.: Modelling diversity of solutions. In: Proceedings of 34th AAAI Conference on Artificial Intelligence (AAAI 2020), pp. 1528–1535 (2020)

    Google Scholar 

  15. van Kreveld, M., Speckmann, B., Urhausen, J.: Diverse partitions of colored points. In: Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol. 12808, pp. 641–654. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83508-8_46

    Chapter  Google Scholar 

  16. Kulesza, A., Taskar, B.: Determinantal point processes for machine learning. Found. Trends Mach. Learn. 5(2–3), 123–286 (2012). https://doi.org/10.1561/2200000044

    Article  MATH  Google Scholar 

  17. Kunaver, M., Pozrl, T.: Diversity in recommender systems - a survey. Knowl. Based Syst. 123, 154–162 (2017). https://doi.org/10.1016/j.knosys.2017.02.009

    Article  Google Scholar 

  18. Otter, R.: The number of trees. Ann. Math. 49(3), 583–599 (1948)

    Article  MathSciNet  Google Scholar 

  19. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62(1), 26–29 (1955)

    MathSciNet  MATH  Google Scholar 

  20. Stallmann, M.F.M.: On counting planar embeddings. Discret. Math. 122(1–3), 385–392 (1993). https://doi.org/10.1016/0012-365X(93)90316-L

    Article  MathSciNet  MATH  Google Scholar 

  21. Tuomisto, H.: A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 164(4), 853–860 (2010). https://doi.org/10.1007/s00442-010-1812-0

    Article  Google Scholar 

  22. Ulrich, T., Bader, J., Thiele, L.: Defining and optimizing indicator-based diversity measures in multiobjective search. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 707–717. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_71

    Chapter  Google Scholar 

  23. Wineberg, M., Oppacher, F.: The underlying similarity of diversity measures used in evolutionary computation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1493–1504. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45110-2_21

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Klute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klute, F., van Kreveld, M. (2022). On Fully Diverse Sets of Geometric Objects and Graphs. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics