Skip to main content
Log in

G-Sasaki Manifolds and K-Energy

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we introduce a class of Sasaki manifolds, called G-Sasaki manifolds with a reductive G-group action on their Kähler cones. By proving the properness of K-energy on such manifolds, we obtain a sufficient and necessary condition for the existence of G-Sasaki–Einstein metrics. A similar result is also obtained for G-Sasaki–Ricci solitons. As an application, we construct many new examples of G-Sasaki–Ricci solitons by an established openness theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. According to a recent work of He, Theorem 5.6 gives a criterion for the existence of transverse constant scalar curvature metrics on G-Sasaki manifolds [29].

  2. The authors would like to thank the referee for telling them the reference [30].

  3. Proposition 6.1 will be also used in the proof of Theorem 1.2 in Sect. 8.

References

  1. Alexeev, V., Brion, M.: Stable reductive varieties I: affine varieties. Invent. Math. 157, 227–274 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Alexeev, V., Brion, M.: Stable reductive varieties II: projective case. Adv. Math. 184, 382–408 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Alexeev, V., Katzarkov, L.: On K-stability of reductive varieties. Geom. Funct. Anal. 15, 297–310 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Azad, H., Loeb, J.: Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces. Indag. Math. (N.S.) 3, 365–375 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Blair, D.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  6. Borel, A.: Linear Algebraic Groups, Graduate Texts in Math, vol. 126. Springer, New York (1991)

    Google Scholar 

  7. Boyer, C., Galicki, K.: On Sasakian–Einstein geometry. Int. J. Math. 11, 873–909 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Boyer, C., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  9. Boyer, C., Galicki, K., Simanca, R.: On Eta-Einstein Sasakian metrics. Commun. Math. Phys. 262, 177–208 (2006)

    MATH  Google Scholar 

  10. Boyer, C., Galicki, K., Simanca, R.: Canonical Sasakian metrics. Commun. Math. Phys. 279, 705–733 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke. Math. J. 58, 397–424 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cao, H., Tian, G., Zhu, X.: Kähler–Ricci solitons on compact complex manifolds with \(C_1(M){\,}\!>\!{\,}0\). Geom. Funct. Anal. 15, 697–719 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Chen, X., Cheng, J.: On the Constant Scalar Kähler Metrics, General Automorphism Group. arXiv:1801.05907

  14. Cho, K., Futaki, A., Ono, H.: Uniqueness and examples of compact toric Sasaki–Einstein metrics. Commun. Math. Phys. 277, 439–458 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Collins, T., Xie, D., Yau, S. T.: K-Stability and Stability of Chiral Ring. arXiv:1606.09260

  16. Collins, T., Székelyhidi, G.: Sasaki-Einstein Metrics and K-Stability. Geom. Topol. 23, 1339–1413 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Darvas, T., Rubinstein, Y.: Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. J. Am. Math. Soci. 30, 347–387 (2017)

    MATH  Google Scholar 

  18. Delcroix, T.: Kähler–Einstein metrics on group compactifications. Geom. Funct. Anal. 27, 78–129 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Delcroix, T.: K-Stability of Fano Spherical Varieties, to appear on Annales Scientifiques de l’École Normale Supérieure

  20. Delcroix, T.: Kähler geometry on horosymmetric varieties, and application to Mabuchi’s K-energy functional, to appear on Journal für die reine und angewandte Math

  21. Delzant, T.: Hamiltoniens periodique et image convexe del’application moment. Bull. Soc. Math. France 116, 315–339 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Donaldson, S.: Interior estimates for solutions of Abreu’s equation. Collect. Math. 56, 103–142 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Donaldson, S.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–348 (2002)

    MathSciNet  MATH  Google Scholar 

  24. El Kacimi-Alaoui, A.: Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications. Compos. Math. 79, 57–106 (1990)

    MATH  Google Scholar 

  25. Fulton, W.: Introduction to Toric Varieties. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  26. Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom. 83, 585–635 (2009)

    MATH  Google Scholar 

  27. Guillemin, V.: Kaehler structures on toric varieties. J. Differ. Geom. 40, 285–309 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Hatakeyama, Y.: Some notes on differentiable manifolds with almost contact structures. Tôhoko Math. J. 15, 176–181 (1963)

    MathSciNet  MATH  Google Scholar 

  29. He, W.: Scalar Curvature and Properness on Sasaki Manifolds. arXiv:1802.03841

  30. He, W., Sun, S.: Frankel conjecture and Sasaki geometry. Adv. Math. 291, 912–960 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Knapp, A.: Lie Groups Beyond an Introduction. Birkhäuser Boston Inc., Boston (2002)

    MATH  Google Scholar 

  32. Kobayashi, S.: Principal fibre bundles with the \(1\)-dimensional toroidal group. Tôhoko Math. J. 8, 29–45 (1956)

    MathSciNet  MATH  Google Scholar 

  33. Lerman, E.: Contact toric manifolds. J. Symp. Geom. 1, 785–828 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Li, Y., Zhou, B.: Mabuchi metrics and properness of the modified Ding functional, to appear on Pac. J. Math

  35. Li, Y., Zhou, B., Zhu, X.: K-energy on polarized compactifications of Lie groups. J. Funct. Anal. 275, 1023–1072 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Maldacena, J.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Martelli, D., Sparks, J., Yau, S.-T.: The geometric dual of \(\alpha \)-maximisation for toric Sasaki–Einstein manifolds. Commun. Math. Phys. 268, 39–65 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki–Einstein manifolds and volume minimisation. Commun. Math. Phys. 280, 611–673 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Ruzzi, A.: Fano symmetric varieties with low rank. Publ. RIMS. Kyoto Univ. 48, 235–278 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Tanno, S.: The topology of contact Riemannian manifolds. Ill. J. Math. 12, 700–717 (1968)

    MathSciNet  MATH  Google Scholar 

  41. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Tian, G.: Existence of Einstein metrics on fano manifolds. Prog. Math.297, Birkhäuser, (2012)

  43. Tian, G., Zhu, X.: A new holomorphic invariant and uniqueness of Kähler–Ricci solitons. Comment. Math. Helv. 77, 297–325 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Wang, X., Zhu, X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Wang, F., Zhou, B., Zhu, X.: Modified Futaki invariant and equivariant Riemann–Roch formula. Adv. Math. 289, 1205–1235 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge- Ampère equation I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    MATH  Google Scholar 

  47. Yau, S.T.: Open problem in geometry, Differential geometry: partial differential equations on manifolds (Los Angles, CA, 1990). Proc. Symp. Pure Math. 54, 1–28 (1993)

    Google Scholar 

  48. Zhang, X.: Energy properness and Sasaki–Einstein metrics. Commun. Math. Phys. 306, 229–260 (2011)

    MATH  Google Scholar 

  49. Zhou, B., Zhu, X.: Relative K-stability and modified K-energy on toric manifolds. Adv. Math. 219, 1327–1362 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Zhou, B., Zhu, X.: K-stability and extremal metrics. Proc. Am. Math. Soc. 136, 3301–3307 (2008)

    MATH  Google Scholar 

  51. Zhou, B., Zhu, X.: Minimizing weak solutions for Calabi’s extremal metrics on toric manifolds. Calc. Var. 32, 191–217 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Y. Li was partially supported by BX20180010 and X. Zhu by NSFC Grants 11771019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhu, X. G-Sasaki Manifolds and K-Energy. J Geom Anal 31, 1415–1470 (2021). https://doi.org/10.1007/s12220-019-00285-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00285-1

Keywords

Mathematics Subject Classification

Navigation