Skip to main content
Log in

Geometry of Spaces of Orthogonally Additive Polynomials on C(K)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the space of orthogonally additive n-homogeneous polynomials on C(K). There are two natural norms on this space. First, there is the usual supremum norm of uniform convergence on the closed unit ball. As every orthogonally additive n-homogeneous polynomial is regular with respect to the Banach lattice structure, there is also the regular norm. These norms are equivalent, but have significantly different geometric properties. We characterise the extreme points of the unit ball for both norms, with different results for even and odd degrees. As an application, we prove a Banach–Stone theorem. We conclude with a classification of the exposed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaminos, J., Brešar, M., Špenko, Š., Villena, A.R.: Orthogonally additive polynomials and orthosymmetric maps in Banach algebras with properties \(\mathbb{A}\) and \(\mathbb{B}\). Proc. Edinb. Math. Soc. 59(3), 559–568 (2016)

    Article  MathSciNet  Google Scholar 

  2. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006) (Reprint of the 1985 original)

  3. Benyamini, Y., Lassalle, S., Llavona, J.G.: Homogeneous orthogonally additive polynomials on Banach lattices. Bull. London Math. Soc. 38(3), 459–469 (2006)

    Article  MathSciNet  Google Scholar 

  4. Boulabiar, K.: On products in lattice-ordered algebras. J. Aust. Math. Soc. 75(1), 23–40 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bu, Q., Buskes, G.: Polynomials on Banach lattices and positive tensor products. J. Math. Anal. Appl. 388(2), 845–862 (2012)

    Article  MathSciNet  Google Scholar 

  6. Sánchez, F.C.: Diameter preserving linear maps and isometries. Arch. Math. (Basel) 73(5), 373–379 (1999)

    Article  MathSciNet  Google Scholar 

  7. Carando, D., Lassalle, S., Zalduendo, I.: Orthogonally additive polynomials over \(C(K)\) are measures–a short proof. Integral Equ. Oper. Theory 56(4), 597–602 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chacon, R.V., Friedman, N.: Additive functionals. Arch. Ration. Mech. Anal. 18, 230–240 (1965)

    Article  MathSciNet  Google Scholar 

  9. Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64. Longman Scientific & Technical, Harlow (1993)

    MATH  Google Scholar 

  10. Dineen, S.: Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics. Springer, London (1999)

    Book  Google Scholar 

  11. Dunford, N., Schwartz, J.T.: Linear Operators. Part I, Wiley Classics Library, Wiley, New York (1988). General theory, with the assistance of Bade, W.G., Bartle, R.G. Reprint of the 1958 original, A Wiley-Interscience Publication

  12. Friedman, N., Katz, M.: A representation theorem for additive functionals. Arch. Ration. Mech. Anal. 21, 49–57 (1966)

    Article  MathSciNet  Google Scholar 

  13. Friedman, N.A., Katz, M.: On additive functionals. Proc. Am. Math. Soc. 21, 557–561 (1969)

    Article  MathSciNet  Google Scholar 

  14. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Springer, New York (1965)

    MATH  Google Scholar 

  15. Kakutani, S.: Concrete representation of abstract \((L)\)-spaces and the mean ergodic theorem. Ann. Math. 42, 523–537 (1941)

    Article  MathSciNet  Google Scholar 

  16. Kakutani, S.: Concrete representation of abstract \((M)\)-spaces. A characterization of the space of continuous functions. Ann. Math. 42, 994–1024 (1941)

    Article  MathSciNet  Google Scholar 

  17. Kusraeva, Z.A.: On the representation of orthogonally additive polynomials. Sibirsk. Mat. Zh. 52(2), 315–325 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Lacey, H.E.: The Isometric Theory of Classical Banach Spaces. Springer-Verlag, New York-Heidelberg, (1974), Die Grundlehren der mathematischen Wissenschaften, Band 208

  19. Loane, J.: Polynomials on Vector Lattices. Ph.D. thesis, National University of Ireland Galway (2007)

  20. Meyer-Nieberg, P.: Banach Lattices. Universitext, Springer, Berlin (1991)

    Book  Google Scholar 

  21. Mizel, V.J.: Characterization of non-linear transformations possessing kernels. Can. J. Math. 22, 449–471 (1970)

    Article  MathSciNet  Google Scholar 

  22. Palazuelos, C., Peralta, A.M., Villanueva, I.: Orthogonally additive polynomials on \(C^\ast \)-algebras. Q. J. Math. 59(3), 363–374 (2008)

    Article  MathSciNet  Google Scholar 

  23. Pérez-García, D., Villanueva, I.: Orthogonally additive polynomials on spaces of continuous functions. J. Math. Anal. Appl. 306(1), 97–105 (2005)

    Article  MathSciNet  Google Scholar 

  24. Rao, M.M.: Local functionals, measure theory, Oberwolfach 1979 (Proc. Conf., Oberwolfach, 1979), Lecture Notes in Mathematics, vol. 794, pp. 484–496. Springer, Berlin (1980)

  25. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  26. Sundaresan, K.: Geometry of spaces of homogeneous polynomials on Banach lattices, applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 571–586. American Mathematical Society, Providence, RI (1991)

  27. Toumi, M.A.: A decomposition of orthogonally additive polynomials on Archimedean vector lattices. Bull. Belg. Math. Soc. Simon Stevin 20(4), 621–638 (2013)

    Article  MathSciNet  Google Scholar 

  28. Šmul’yan, V.: On some geometrical properties of the unit sphère in the space of the type (B). Rec. Math. Moscou, n. Ser. 6, 77–94 (1939). (Russian)

    Google Scholar 

  29. Šmul’yan, V.: Sur la derivabilite de la norme dans l’espace de Banach., C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 27, 643–648 (1940) (French)

  30. Villena, A.R.: Orthogonally additive polynomials on Banach function algebras. J. Math. Anal. Appl. 448(1), 447–472 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Dirk Werner and Tony Wickstead for useful discussions. We would also like to thank the referee for a careful reading of the paper and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Ryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, C., Ryan, R.A. & Snigireva, N. Geometry of Spaces of Orthogonally Additive Polynomials on C(K). J Geom Anal 30, 4211–4239 (2020). https://doi.org/10.1007/s12220-019-00240-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00240-0

Keywords

Mathematics Subject Classification

Navigation