Skip to main content
Log in

On polyharmonic polynomials

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We study the orthogonal projection of homogeneous polynomials onto the space of homogeneous polyharmonic polynomials. To do this we derive the decomposition of homogeneous polynomials in terms of the Kelvin transform of derivatives of the fundamental solution \(|x|^{2-n}\) or \(\log |x|\). We consider also the vector bases of the space of homogeneous polyharmonic polynomials and study the problem of convergence of orthogonal series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic Functions, Clarendon Press (Oxford, 1983).

  2. S. Axler and W. Ramey, Harmonic polynomials and Dirichlet-type problems, Proc. Amer. Math. Soc., 123 (1995), 3765–3773.

  3. S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, 2nd ed., Springer- Verlag (New York, 2001).

  4. M. Brelot and G. Choquet, Polynômes harmoniques et polyharmoniques, in: Second colloque sur les équations aux dérivées partielles, Bruxelles, 1954, Georges Thone, Masson & Cie, (Lig̀e, Paris, 1955), pp. 45–66.

  5. M. D. Buhmann, Radial Basis Functions. Theory and Implementations, Cambridge University Press (Cambridge, 2003).

  6. A. Fryant and M. K. Vemuri, Pythagorean identity for polyharmonic polynomials, Int. J. Math. Math. Sci., 29 (2002), 115–119.

  7. F. Gazzola, H. Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag (New York, 2010).

  8. H. Grzebuła and S. Michalik, A Dirichlet type problem for complex polyharmonic functions, Acta Math. Hungar., 153 (2017), 216–229.

  9. H. Grzebuła and S. Michalik, Spherical polyharmonics and Poisson kernels for polyharmonic functions, Complex Var. Elliptic Equ., 64 (2019), 420–442.

  10. O. Kounchev, Multivariate Polysplines: Applications to Numerical and Wavelet Analysis, Academic Press (San Diego, 2001).

  11. E. Lundberg and H. Render, The Khavinson–Shapiro conjecture and polynomial decompositions, J. Math. Anal. Appl., 376 (2011), 506–513.

  12. G. Łysik, On the mean-value property for polyharmonic functions, Acta Math. Hungar., 133 (2011), 133–139.

  13. W. R. Madych and S. A. Nelson, Polyharmonic cardinal splines, J. Approx. Theory, 60 (1990), 141–156.

  14. S. Michalik, Summable solutions of some partial differential equations and generalised integral means, J. Math. Anal. Appl., 444 (2016), 1242–1259.

  15. H. Render, A characterization of the Khavinson–Shapiro conjecture via Fischer operators, Potential Anal., 45 (2016), 539–543.

  16. H. Render, Cauchy, Goursat and Dirichlet problems for Holomorphic partial differential equations, Comput. Methods Funct. Theory, 10 (2011), 519–554.

  17. H. Render, Real Bargmann spaces, Fischer decompositions, and sets of uniqueness for polyharmonic functions, Duke Math. J., 142 (2008), 313–352.

  18. H. Render, Reproducing kernels for polyharmonic polynomials, Arch. Math., 91 (2008), 136–144.

  19. H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc., 21 (1989), 513–537.

  20. J. Siciak, Holomorphic continuation of harmonic functions, Ann. Polon. Math., 29 (1974), 67–73.

Download references

Acknowledgement

The authors are grateful to the anonymous referees for the valuable comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Grzebuła.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzebuła, H., Michalik, S. On polyharmonic polynomials. Acta Math. Hungar. 169, 325–348 (2023). https://doi.org/10.1007/s10474-023-01323-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-023-01323-9

Key words and phrases

Mathematics Subject Classification

Navigation