Skip to main content
Log in

Envelopes with Prescribed Singularities

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove that quasi-plurisubharmonic envelopes with prescribed analytic singularities in suitable big cohomology classes on compact Kähler manifolds have the optimal \(C^{1,1}\) regularity on a Zariski open set. This also proves regularity of certain pluricomplex Green’s functions on Kähler manifolds. We then go on to prove the same regularity for envelopes when the manifold is assumed to have boundary. As an application, we answer affirmatively a question of Ross–Witt-Nyström concerning the Hele-Shaw flow on an arbitrary Riemann surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, E., Demailly, J.-P.: Two counterexamples concerning the pluri-complex Green function in \(\mathbb{C}^n\). Indiana Univ. Math. J. 37(4), 865–867 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37(1), 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, R.J.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. 131(5), 1485–1524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, R.J.: From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit. Math. Z. 219(1–2), 365–394 (2019)

    Article  MATH  Google Scholar 

  5. Berman, R.J.: On the optimal regularity of weak geodesics in the space of metrics on a polarized manifold. In: Analysis Meets Geometry. Trends in Mathematics, pp. 111–120, Birkhäuser/Springer, Cham (2017)

  6. Berman, R.J., Boucksom, S., Witt-Nyström, D.: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207(1), 1–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blocki, Z.: The \(C^{1,1}\) regularity of the pluricomplex Green function. Michigan Math. J. 47, 211–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blocki, Z.: A gradient estimate in the Calabi–Yau theorem. Math. Ann. 344(2), 317–327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blocki, Z.: On geodesics in the space of Kähler metrics. In: Advances in Geometric Analysis. Advanced Lectures in Mathematics (ALM), vol. 21, pp. 3–19. International Press, Somerville, MA (2012)

  10. Boucksom, S.: Monge–Ampère equations on complex manifolds with boundary. In: Guedj, V. (ed.) Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics. Lecture Notes in Mathematics, vol. 2038, pp. 257–282. Springer, Heidelberg (2012)

    Chapter  MATH  Google Scholar 

  11. Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Monge–Ampère equations in big cohomology classes. Acta Math. 205(2), 199–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bremermann, H.J.: On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains. Characterization of Šilov boundaries. Trans. Am. Math. Soc. 91, 246–276 (1959)

    MATH  Google Scholar 

  13. Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic equations. Commun. Pure Appl. Math. 38(2), 209–252 (1985)

    Article  MATH  Google Scholar 

  14. Chen, X.X.: The space of Kähler metrics. J. Differ. Geom. 56(2), 189–234 (2000)

    Article  MATH  Google Scholar 

  15. Chen, X.X., Tang, Y.: Test configuration and geodesic rays. In: Géométrie différentielle, physique mathématique, mathématiques et société. I. Astérisque No. 321, 139–167 (2008)

  16. Chu, J., Tosatti, V., Weinkove, B.: The Monge-Ampère equation for non-integrable almost complex structures. J. Eur. Math. Soc. (JEMS) 21(7), 1949–1984 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chu, J., Tosatti, V., Weinkove, B.: On the \(C^{1,1}\) regularity of geodesics in the space of Kähler metrics. Ann. PDE 3(2), 3:15 (2017)

    Article  MATH  Google Scholar 

  18. Chu, J., Tosatti, V., Weinkove, B.: \(C^{1,1}\) regularity for degenerate complex Monge–Ampère equations and geodesics rays. Commun. Partial Differ. Equ. 43(2), 292–312 (2018)

    Article  MATH  Google Scholar 

  19. Chu, J., Zhou, B.: Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds. Sci. China Math. 62(2), 371–380 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Darvas, T.: Weak geodesic rays in the space of Kähler potentials and the class \(\cal{E}(X,\omega )\). J. Inst. Math. Jussieu 16(4), 837–858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Darvas, T., Di Nezza, E., Lu, C.H.: On the singularity type of full mass currents in big cohomology classes. Compos. Math. 154(2), 380–409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Darvas, T., Di Nezza, E., Lu, C.H.: Monotonicity of non-pluripolar products and complex Monge-Ampère equations with prescribed singularity. Anal. PDE 11(8), 2049–2087 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Demailly, J.-P.: Potential theory in several complex variables. Preprint (1991). https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/nice_cimpa.pdf

  24. Demailly, J.-P.: Singular Hermitian metrics on positive line bundles. In: Complex Algebraic Varieties (Bayreuth, 1990). Lecture Notes in Mathematics, vol. 1507, pp. 87–104, Springer, Berlin (1992)

  25. Demailly, J.-P.: Complex analytic and differential geometry, freely accessible book. https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf

  26. Demailly, J.-P., Peternell, T., Schneider, M.: Pseudo-effective line bundles on compact Kähler manifolds. Int. J. Math. 12(6), 689–741 (2001)

    Article  MATH  Google Scholar 

  27. Dujardin, R., Guedj, V.: Geometric properties of maximal psh functions. In: Guedj, V. (ed.) Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics. Lecture Notes in Mathematics, pp. 257–282. Springer, Heidelberg (2012)

    Google Scholar 

  28. Guan, B.: The Dirichlet problem for complex Monge–Ampère equations and regularity of the pluri-complex Green function. Commun. Anal. Geom. 6 (1998), no. 4, 687–703. Correction 8 (2000), no. 1, 213–218

  29. Hironaka, H.: Bimeromorphic smoothing of a complex-analytic space. Acta Math. Vietnam. 2(2), 103–168 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Klimek, M.: Extremal plurisubharmonic functions and invariant pseudodistances. Bull. Soc. Math. Fr. 113(2), 231–240 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. Fr. 109(4), 427–474 (1981)

    Article  MATH  Google Scholar 

  32. McCleerey, N., Xiao, J.: Polar transform and local positivity for curves. Ann. Fac. Sci. Toulouse Math. To appear

  33. Phong, D.H., Sturm, J.: The Dirichlet problem for degenerate complex Monge–Ampère equations. Commun. Anal. Geom. 18(1), 145–170 (2010)

    Article  MATH  Google Scholar 

  34. Phong, D.H., Sturm, J.: On the singularities of the pluricomplex Green’s function. In: Advances in Analysis: The Legacy of Elias M. Stein. Princeton Mathematical Series, vol. 50, pp. 419–435. Princeton Mathematical Series, Princeton, NJ (2014)

  35. Rashkovskii, A., Sigurdsson, R.: Green functions with singularities along complex spaces. Int. J. Math. 16(4), 333–355 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ross, J., Witt Nyström, D.: Analytic test configurations and geodesic rays. J. Symplectic Geom. 12(1), 125–169 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ross, J., Witt Nyström, D.: Envelopes of plurisubharmonic metrics with prescribed singularities. Ann. Fac. Sci. Toulouse Math. (6) 26(3), 687–728 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ross, J., Witt Nyström, D.: The Dirichlet problem for the complex homogeneous Monge–Ampère equation. In: Modern Geometry: A Celebration of the Work of Simon Donaldson. Proceedings of Symposia in Pure Mathematics, vol. 99, pp. 289–330 (2018)

  39. Siciak, J.: Wiener’s type sufficient conditions in \({\mathbb{C}}^n\). Univ. Iagel. Acta Math. 35, 151–161 (1997)

    MathSciNet  MATH  Google Scholar 

  40. Song, J., Zelditch, S.: Test configurations, large deviations and geodesic rays on toric varieties. Adv. Math. 229(4), 2338–2378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tosatti, V.: Regularity of envelopes in Kähler classes. Math. Res. Lett. 25(1), 281–289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tosatti, V.: Nakamaye’s theorem on complex manifolds. In: Algebraic Geometry: Salt Lake City 2015. Part 1. Proceedings of Symposia in Pure Mathematics, vol. 97.1, pp. 633–655. American Mathematical Society (2018)

  43. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Julius Ross for useful comments about the Hele-Shaw flow and for encouraging us to prove Theorem 1.2. I would also like to thank my advisor Valentino Tosatti for introducing me to this circle of questions, for greatly improving the format of this paper, and for his continued patience and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas McCleerey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by NSF RTG Grant DMS-1502632.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCleerey, N. Envelopes with Prescribed Singularities. J Geom Anal 30, 3716–3741 (2020). https://doi.org/10.1007/s12220-019-00215-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00215-1

Keywords

Mathematics Subject Classification

Navigation