Skip to main content
Log in

Symmetric Self-Shrinkers for the Fractional Mean Curvature Flow

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We show existence of homothetically shrinking solutions of the fractional mean curvature flow, whose boundary consists in a prescribed number of concentric spheres. We prove that all these solutions, except from the ball, are dynamically unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abatangelo, N., Valdinoci, E.: A notion of nonlocal curvature. Numer. Funct. Anal. Optim. 35(7–9), 793–815 (2014). https://doi.org/10.1080/01630563.2014.901837

    Article  MathSciNet  MATH  Google Scholar 

  2. Abresch, U., Langer, J.C.: The normalized curve shortening flow and homothetic solutions. J. Differ. Geom. 23(2), 175–196 (1986)

    Article  MathSciNet  Google Scholar 

  3. Angenent, S.B.: Shrinking doughnuts: nonlinear diffusion equations and their equilibrium states, 3, (Gregynog, 1989). In: Progress in Nonlinear Differential Equations and Their Applications 7, pp. 21–38. Birkhäuser Boston, Boston, MA (1992)

  4. Angenent, S.B., Ilmanen, T., Chopp, D.L.: A computed example of nonuniqueness of mean curvature flow in \({\mathbb{R}}^3\). Comm. Partial Diff. Equ. 20(11–12), 1937–1958 (1995). https://doi.org/10.1080/03605309508821158

    Article  Google Scholar 

  5. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Comm. Pure Appl. Math. 63(9), 1111–1144 (2010). https://doi.org/10.1002/cpa.20331

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Souganidis, P.E.: Convergence of nonlocal threshold dynamics approximations to front propagation. Arch. Ration. Mech. Anal. 195(1), 1–23 (2010). https://doi.org/10.1007/s00205-008-0181-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Cesaroni, A., Dipierro, S., Novaga, M., Valdinoci, E.: Fattening and nonfattening phenomena for planar nonlocal curvature flows. Math. Ann. (2018) https://doi.org/10.1007/s00208-018-1793-6

  8. Chambolle, A., Morini, M., Ponsiglione, M.: Nonlocal curvature flows. Arch. Ration. Mech. Anal. 218(3), 1263–1329 (2015). https://doi.org/10.1007/s00205-015-0880-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle, A., Novaga, M., Ruffini, B.: Some results on anisotropic fractional mean curvature flows. Interfaces Free Bound 19(3), 393–415 (2017). https://doi.org/10.4171/IFB/387

    Article  MathSciNet  MATH  Google Scholar 

  10. Cinti, E., Sinestrari, C., Valdinoci, E.: Neckpinch singularities in fractional mean curvature flows. Proc. Am. Math. Soc. 146(6), 2637–2646 (2018). https://doi.org/10.1090/proc/14002

    Article  MathSciNet  MATH  Google Scholar 

  11. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I: generic singularities. Ann. Math. 175(2), 755–833 (2012). https://doi.org/10.4007/annals.2012.175.2.7

    Article  MathSciNet  MATH  Google Scholar 

  12. Gage, M.E., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Diff. Geom. 23(1), 69–96 (1986)

    Article  MathSciNet  Google Scholar 

  13. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Diff. Geom. 20(1), 237–266 (1984)

    Article  MathSciNet  Google Scholar 

  14. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Diff. Geom. 31(1), 285–299 (1990)

    Article  MathSciNet  Google Scholar 

  15. Imbert, C.: Level set approach for fractional mean curvature flows. Interfaces Free Bound 11(1), 153–176 (2009). https://doi.org/10.4171/IFB/207

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleene, S.J., Møller, N.M.: Self-shrinkers with a rotational symmetry. Trans. Am. Math. Soc. 366, 3943–3963 (2014). https://doi.org/10.1090/S0002-9947-2014-05721-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Novaga, M., Paolini, E.: Stability of crystalline evolutions. Math. Models Methods Appl. Sci. 15(6), 921–937 (2005). https://doi.org/10.1142/S0218202505000571

    Article  MathSciNet  MATH  Google Scholar 

  18. Paolini, M., Pasquarelli, F.: Unstable crystalline Wulff shapes in 3D, variational methods for discontinuous structures. Progr. Nonlinear Diff. Equ. Appl. 51, 141–153 (2002)

    MATH  Google Scholar 

  19. Sáez, M., Valdinoci, E.: On the evolution by fractional mean curvature. Comm. Anal. Geom. 27(1), 211–249 (2019)

    Article  MathSciNet  Google Scholar 

  20. Stancu, A.: Asymptotic behavior of solutions to a crystalline flow. Hokkaido Math. J. 27(2), 303–320 (1998). https://doi.org/10.14492/hokmj/1351001287

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are members of INDAM-GNAMPA. The second author was partially supported by the University of Pisa Project PRA 2017 Problemi di ottimizzazione e di evoluzione in ambito variazionale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Novaga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesaroni, A., Novaga, M. Symmetric Self-Shrinkers for the Fractional Mean Curvature Flow. J Geom Anal 30, 3698–3715 (2020). https://doi.org/10.1007/s12220-019-00214-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00214-2

Keywords

Mathematics Subject Classification

Navigation