Skip to main content
Log in

Vanishing theorems, higher order mean curvatures and index estimates for self-shrinkers

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study non-compact self-shrinkers first in general codimension and then in codimension 1. We respectively prove some vanishing theorems giving rise to rigidity of the self-shrinker and then estimates involving the higher order mean curvatures for the oriented case. The paper ends with some results on their index when considered as appropriate \(\bar f\)-minimal hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, Journal of Differential Geometry 23 (1986), 175–196.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. J. Alías, P. Mastrolia and M. Rigoli, Maximum Principles and Geometric Applications, Springer Monographs in Mathematics, Springer, Cham, 2016.

    Book  MATH  Google Scholar 

  3. L. J. Alías, M. Dajczer and M. Rigoli, Higher order mean curvature estimates for bounded complete hypersurfaces, Nonlinear Analysis 84 (2013), 73–83.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Arezzo and J. Sun, Self-shrinkers for the mean curvature flow in arbitrary codimension, Mathematische Zeitschrift 274 (2013), 993–1027.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. L. Barbosa and A. G. Colares, Stability of hypersurfaces with constant r-mean curvature, Annals of Global Analysis and Geometry 15 (1997), 277–297.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Barta, Sur la vibration fundamentale d’une membrane, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 2014 (1937), 472–473.

    MATH  Google Scholar 

  7. G. P. Bessa and J. F. Montenegro, An extension of Barta’s theorem and geometric applications, Annals of Global Analysis and Geometry 31 (2007), 345–362.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bianchini, L. Mari and M. Rigoli, Spectral radius, index estimates for Schrodinger operators and geometric applications, Journal of Functional Analysis 256 (2009), 1769–1820.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bianchini, L. Mari and M. Rigoli, On some aspects of oscillation theory and geometry, Memoirs of the American Mathematical Society 225 (2013).

  10. S. Brendle, Embedded self-similar shrinkers of genus 0, Annals of Mathematics 183 (2016), 715–728.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Brooks, A relation between growth and the spectrum of the Laplacian, Mathematische Zeitschrift 178 (1981), 501–508.

    Article  MathSciNet  MATH  Google Scholar 

  12. H.-D. Cao and H. Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calculus of Variations and Partial Differential Equations 46 (2013), 879–889.

    Article  MathSciNet  MATH  Google Scholar 

  13. Q.-M. Cheng and Y. Peng, Complete self-shrinkers of the mean curvature flow, Calculus of Variations and Partial Differential Equations 52 (2015), 497–506.

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Cheng and D. Zhou, Volume estimate about shrinkers, Proceedings of the American Mathematical Society 141 (2013), 687–696.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. H. Colding, T. Ilmanen, W. P. Minicozzi, II and B. White, The round sphere minimizes entropy among closed self-shrinkers, Journal of Differential Geometry 95 (2013), 53–69.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. H. Colding, T. Ilmanen and W. P. Minicozzi, II, Rigidity of generic singularities of mean curvature flow, Publications Mathématiques. Institut de Hauthes Études Scientifiques 121 (2015), 363–382.

    Article  MATH  Google Scholar 

  17. T. H. Colding and W. P. Minicozzi, II, Generic mean curvature flow I; generic singularities, Annals of Mathematics 175 (2012), 755–833.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. H. Colding and W. P. Minicozzi, II and E. K. Pedersen, Mean curvature flow, Bulletin of the American Mathematical Society 52 (2015), 297–333.

    Article  MathSciNet  MATH  Google Scholar 

  19. Q. Ding and Y. L. Xin, Volume growth eigenvalue and compactness for self-shrinkers, Asian Journal of Mathematics 17 (2013), 443–456.

    Article  MathSciNet  MATH  Google Scholar 

  20. Q. Ding and Y. L. Xin, The rigidity theorems of self-shrinkers, Transactions of the American Mathematical Society 366 (2014), 5067–5085.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Drugan and S. J. Kleene, Immersed self-shrinkers, Transactions of the American Mathematical Society 369 (2017), 7213–7250.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Drugan, An immersed S2 self-shrinker, Transactions of the American Mathematical Society 367 (2015), 3139–3159.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Annals of Mathematics 130 (1989), 453–471.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Ecker, Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and their Applications, Vol. 57, Birkhäuser, Boston, MA, 2004.

  25. D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three manifolds, Inventiones Mathematicae 82 (1985), 121–132.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature, Communications on Pure and Applied Mathematics 33 (1980), 199–211.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bulletin of the American Mathematical Society 36 (1999), 135–249.

    Article  MathSciNet  MATH  Google Scholar 

  28. Q. Guang and J. J. Zhu, Rigidity and curvature estimates for graphical self-shrinkers, Calculus of Variations and Partial Differential Equations 56 (2017), Art. 176.

    Google Scholar 

  29. G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, Journal of Differential Geometry 31 (1990), 285–299.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Huisken, Local and global behavior of hypersurfaces moving by mean curvature, in Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proceedings of Symposia in Pure Mathematics, Vol. 54, American Mathematical Society, Providence, RI, 1993, pp. 175–191.

    MATH  Google Scholar 

  31. C. Hussey, Classification and analysis of low index Mean Curvature Flow self-shrinkers, Thesis (Ph.D.) The Johns Hopkins University, ProQuest LLC, Ann Arbor, MI, 2012.

    Google Scholar 

  32. T. Ilmanen, Problems in mean curvature flow, available at https://doi.org/people.math.ethz.ch/~ilmanen/classes/eil03/problems03.pdf

  33. D. Impera and M. Rimoldi, Stability properties and topology at infinity of f-minimal hypersurfaces, Geometriae Dedicata 178 (2015), 21–47.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Impera, Rigidity and gap results for low index properly immersed self-shrinkers in Rm+1, preprint, arXiv:1408.3479.

  35. S. Kleene and N. M. Møller, Self-shrinkers with rotational symmetry, Transactions of the American Mathematical Society 366 (2014), 3943–3963.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. B. Lawson, Jr., Local rigidity theorems for minimal hypersurfaces, Annals of Mathematics 89 (1969), 187–197.

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Q. Le and N. Sesum, Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, Communications in Analysis and Geometry 19 (2011), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  38. H. Li and Y. Wei, Classification and rigidity of self-shrinkers in the mean curvature flow, Journal of the Mathematical Society of Japan 66 (2014), 709–734.

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Mari, M. Magliaro and M. Rigoli, A note on Killing fields and CMC hypersurfaces, Journal of Mathematical Analysis and Applications 431 (2015), 919–934.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Montiel and A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, in Differential Geometry, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 52, Longman Higher Education, Harlow, 1991, pp. 279–297.

    MathSciNet  MATH  Google Scholar 

  41. W. F. Moss and J. Piepenbrink, Positive solutions of elliptic equations, Pacific Journal of Mathematics 75 (1978), 219–226.

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Pigola, M. Rigoli and A. G. Setti, A remark on the maximum principle and stochastic completeness, Proceedings of the AmericanMathematical Society 131 (2003), 1283–1288.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Pigola, M. Rigoli and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis, Progress in Mathematics, Vol. 266, Birkäuser, Basel, 2008.

  44. S. Pigola and M. Rimoldi, Complete self-shrinkers confined into some regions of the space, Annals of Global Analysis and Geometry 45 (2014), 47–65.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Rimoldi, On a classification theorem for Self-Shrinkers, Proceedings of the American Mathematical Society 142 (2014), 3605–3613.

    Article  MathSciNet  MATH  Google Scholar 

  46. K. Smoczyk, Self-shrinkers of the mean curvature flow in arbitrary codimension, International Mathematics Research Notices 48 (2005), 2983–3004.

    Article  MathSciNet  MATH  Google Scholar 

  47. L. Wang, A Benstein type theorem for self-similar shrinkers, Geometriae Dedicata 15 (2011), 297–303.

    Article  MATH  Google Scholar 

  48. S. T. Yau, Submanifolds with constant mean curvature, American Journal of Mathematics 96 (1974), 346–366.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregório Pacelli Bessa.

Additional information

Research partially supported by CNPq-Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessa, G.P., Pessoa, L.F. & Rigoli, M. Vanishing theorems, higher order mean curvatures and index estimates for self-shrinkers. Isr. J. Math. 226, 703–736 (2018). https://doi.org/10.1007/s11856-018-1703-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1703-3

Navigation