Skip to main content
Log in

Octonion-Valued Forms and the Canonical 8-Form on Riemannian Manifolds with a Spin(9)-Structure

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

It is well known that there is a unique Spin(9)-invariant 8-form on the octonionic plane that naturally yields a canonical differential 8-form on any Riemannian manifold with a weak Spin(9)-structure. Over the decades, this invariant has been studied extensively and described in several equivalent ways. In the present article, a new explicit algebraic formula for the Spin(9)-invariant 8-form is given. The approach we use generalises the standard expression of the Kähler 2-form. Namely, the invariant 8-form is constructed only from the two octonion-valued coordinate 1-forms on the octonionic plane. For completeness, analogous expressions for the Kraines form, the Cayley calibration and the associative calibration are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K., Matsubara, M.: Invariant forms on the exceptional symmetric spaces \(FII\) and \(EIII\), : Transformation group theory (Taejŏn, 1996). Korea Adv. Inst. Sci. Tech, Taejŏn (1997), pp. 3–16

  2. Abe, K., Matsubara, M.: Erratum to [1], Private communication to P. Piccinni (2018)

  3. Adams, J.F.: On the non-existence of elements of Hopf invariant one. Ann. Math. 72, 20–104 (1960)

    MathSciNet  MATH  Google Scholar 

  4. Alekseevskij, D.V.: Riemannian spaces with unusual holonomy groups. Funkcional. Anal. i Priložen 2(2), 1–10 (1968)

    MathSciNet  MATH  Google Scholar 

  5. Alesker, S.: On P. McMullen’s conjecture on translation invariant valuations. Adv. Math. 155(2), 239–263 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Alesker, S.: Description of translation invariant valuations on convex sets with solution of P. McMullen’s conjecture. Geom. Funct. Anal. 11(2), 244–272 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Alesker, S.: Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations. J. Differential Geom. 63(1), 63–95 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Alesker, S.: Hard Lefschetz theorem for valuations and related questions of integral geometry, Geometric aspects of functional analysis, Lecture Notes in Math., 1850, Springer, Berlin, pp. 9–20 (2004)

  9. Alesker, S.: The multiplicative structure on continuous polynomial valuations. Geom. Funct. Anal. 14(1), 1–26 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Alesker, S.: Plurisubharmonic functions on the octonionic plane and \(Spin(9)\)-invariant valuations on convex sets. J. Geom. Anal. 18(3), 651–686 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Alesker, S., Fourier-type, A.: transform on translation-invariant valuations on convex sets. Israel J. Math. 181, 189–294 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Alesker, S., Bernig, A., Schuster, F.E.: Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21(4), 751–773 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Alesker, S., Bernstein, J.: Range characterization of the cosine transform on higher Grassmannians. Adv. Math. 184(2), 367–379 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Anastasiou, A., Borsten, L., Duff, M.J., Hughes, L.J., Nagy, S.: Super Yang-Mills, division algebras and triality. J. High Energy Phys. 8, 080 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Babalic, E.M., Lazaroiu, C.I.: Internal circle uplifts, transversality and stratified G-structures. J. High Energy Phys. 11, 174 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39(2), 145–205 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Bandos, I.: An analytic superfield formalism for tree superamplitudes in \(D=10\) and \(D=11\). J. High Energy Phys. 5, 103 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: M theory as a matrix model: a conjecture. Phys. Rev. D 55(8), 5112–5128 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    MathSciNet  MATH  Google Scholar 

  20. Berger, M.: Du côté de chez Pu. Ann. Sci. École Norm. Sup. 5, 1–44 (1972)

    MathSciNet  MATH  Google Scholar 

  21. Bernig, A.: Integral geometry under \(G_2\) and Spin(7). Israel J. Math. 184, 301–316 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Bernig, A.: Invariant valuations on quaternionic vector spaces. J. Inst. Math. Jussieu 11(3), 467–499 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Bernig, A., Fu, J.H.G.: Convolution of convex valuations. Geom. Dedicata 123, 153–169 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Bernig, A., Fu, J.H.G.: Hermitian integral geometry. Ann. Math. 173(2), 907–945 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Bernig, A., Solanes, G.: Classification of invariant valuations on the quaternionic plane. J. Funct. Anal. 267(8), 2933–2961 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Bernig, A., Solanes, G.: Kinematic formulas on the quaternionic plane. Proc. Lond. Math. Soc. 115(4), 725–762 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Bernig, A., Voide, F.: \(Spin(9)\)-invariant valuations on the octonionic plane. Israel J. Math. 214(2), 831–855 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Besse, A.L.: Manifolds All of Whose Geodesics are Closed, p. 93. Springer, Berlin-New York (1978)

    MATH  Google Scholar 

  29. Besse, A.L.: Einstein Manifolds, Classics in Mathematics. Springer, Berlin (2008)

    Google Scholar 

  30. Borel, A.: Some remarks about Lie groups transitive on spheres and tori. Bull. Am. Math. Soc. 55, 580–587 (1949)

    MathSciNet  MATH  Google Scholar 

  31. Borsten, L., Dahanayake, D., Duff, M.J., Ebrahim, H., Rubens, W.: Magic square from Yang-Mills squared. Phys. Rev. Lett. 112(13), 131601 (2014)

    Google Scholar 

  32. Brada, C., Pecaut-Tison, F.: Géométrie du plan projectif des octaves de Cayley. Geom. Dedicata 23(2), 131–154 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Brown, R.B., Gray, A.: Riemannian manifolds with holonomy group \(Spin(9)\), Differential geometry (in honor of Kentaro Yano), pp. 41–59. Kinokuniya, Tokyo (1972)

  34. Castrillón López, M., Gadea, P.M., Mykytyuk, I.V.: The canonical eight-form on manifolds with holonomy group \(Spin(9)\). Int. J. Geom. Methods Mod. Phys. 7(7), 1159–1183 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Castrillón López, M., Gadea, P.M., Mykytyuk, I.V.: On the explicit expressions of the canonical 8-form on Riemannian manifolds with \(Spin(9)\) holonomy. Abh. Math. Semin. Univ. Hambg. 87(1), 17–22 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Chacaltana, O., Distler, J., Trimm, A.: Seiberg-Witten for \(Spin(n)\) with spinors. J. High Energy Phys. 8, 027 (2015)

    MathSciNet  MATH  Google Scholar 

  37. de Wit, B., Tollstén, A.K., Nicolai, H.: Locally supersymmetric \(D=3\) nonlinear sigma models. Nucl. Phys. B 392(1), 3–38 (1993)

    MathSciNet  Google Scholar 

  38. Filev, V.G., O’Connor, D.: The BFSS model on the lattice. J. High Energy Phys. 5, 167 (2016)

    Google Scholar 

  39. Friedrich, T.: Weak \(Spin(9)\)-structures on 16-dimensional Riemannian manifolds. Asian J. Math. 5(1), 129–160 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Friedrich, T.: \(Spin(9)\)-structures and connections with totally skew-symmetric torsion. J. Geom. Phys. 47(2–3), 197–206 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Fu, J.H.G.: Structure of the unitary valuation algebra. J. Differential Geom. 72(3), 509–533 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Fulton, W., Harris, J.: Representation Theory, a First Course, Readings in Mathematics. Springer-Verlag, New York (1991)

  43. Gluck, H., Warner, F., Ziller, W.: The geometry of the Hopf fibrations. Enseign. Math. 32(3–4), 173–198 (1986)

    MathSciNet  MATH  Google Scholar 

  44. Gray, A.: Tubes, p. 221. Progress in Mathematics, Birkhäuser Verlag, Basel, Second (2004)

  45. Grigorian, S.: \(G_2\)-structures and octonion bundles. Adv. Math. 308, 142–207 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Günaydin, M., Piron, C., Ruegg, H.: Moufang plane and octonionic quantum mechanics. Commun. Math. Phys. 61(1), 69–85 (1978)

    MathSciNet  MATH  Google Scholar 

  47. Günaydin, M., Sierra, G., Townsend, P.K.: The geometry of \(N=2\) Maxwell-Einstein supergravity and Jordan algebras. Nucl. Phys. B 242(1), 244–268 (1984)

    MathSciNet  Google Scholar 

  48. Günaydin, M., Sierra, G., Townsend, P.K.: Gauging the \(d=5\) Maxwell, Einstein supergravity theories: more on Jordan algebras. Nucl. Phys. B 253(3–4), 573–608 (1985)

    MathSciNet  Google Scholar 

  49. Harvey, F.R.: Spinors and calibrations, Perspectives in Mathematics, Academic Press, Inc., Boston, MA, 9 (1990)

  50. Harvey, F.R., Lawson Jr., H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

    MathSciNet  MATH  Google Scholar 

  51. Hurwitz, A.: Über die Komposition der quadratischen Formen. Math. Ann. 88(1–2), 1–25 (1922)

    MathSciNet  MATH  Google Scholar 

  52. Jordan, P., von Neumann, J., Wigner, E.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934)

    MathSciNet  MATH  Google Scholar 

  53. Knapp, Anthony W.: Lie groups beyond an introduction, p. 140. Progress in Mathematics, Birkhäuser Boston Inc, Boston, MA, Second (2002)

  54. Kraines, V.Y.: Topology of quaternionic manifolds. Trans. Am. Math. Soc. 122, 357–367 (1966)

    MathSciNet  MATH  Google Scholar 

  55. Montgomery, D., Samelson, H.: Transformation groups of spheres. Ann. Math. 44, 454–470 (1943)

    MathSciNet  MATH  Google Scholar 

  56. Moufang, R.: Alternativkörper und der Satz vom vollständigen Vierseit \((D_9)\). Abh. Math. Sem. Univ. Hamburg 9(1), 207–222 (1933)

    MathSciNet  MATH  Google Scholar 

  57. Parton, M., Piccinni, P.: \(Spin(9)\) and almost complex structures on 16-dimensional manifolds. Ann. Glob. Anal. Geom. 41(3), 321–345 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Parton, M., Piccinni, P.: The even Clifford structure of the fourth Severi variety. Complex Manifolds 2, 89–104 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Piccinni, P.: On the cohomology of some exceptional symmetric spaces, Special metrics and group actions in geometry, Springer INdAM Ser., pp. 291–305, 23, Springer, Cham (2017)

  60. Salamon, D.A., Walpuski, T.: Notes on the octonions, 2017, Proceedings of the Gökova Geometry-Topology Conference, Gökova Geometry/Topology Conference (GGT), Gökova, 1–85 (2016)

  61. Salamon, S.: Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, p. 201. Harlow, Longman Scientific & Technical (1989)

  62. Sati, H.: \({\mathbb{O}} P^2\) bundles in M-theory. Commun. Numb. Theory Phys. 3(3), 495–530 (2009)

    MATH  Google Scholar 

  63. Sati, H.: On the geometry of the supermultiplet in M-theory. Int. J. Geom. Methods Mod. Phys. 8(7), 1519–1551 (2011)

    MathSciNet  MATH  Google Scholar 

  64. Simons, J.: On the transitivity of holonomy systems. Ann. Math. 76, 213–234 (1962)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank my advisor Prof. Thomas Wannerer, who gave me the initial impulse to deal with this problem and supported my work by plenty of useful ideas and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kotrbatý.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by DFG Grant WA3510/1-1.

Appendix

Appendix

We now express the form \(\Psi _8\) explicitly in terms of the dual basis \(\{\mathrm{{d}}x^0,\dots ,\mathrm{{d}}x^7,\mathrm{{d}}y^0,\dots ,\mathrm{{d}}y^7\}\) of \(\bigwedge ^1(\mathbb {O}^2)^*\) corresponding to the standard basis \(\{e_0,\dots ,e_7\}\) of \(\mathbb {O}\). Although the computations we perform to this end are slightly more technical, they are based on very elementary algebraic properties of the octonions. Basically, we just use the formula (38) together with the rule \(R_{\overline{e_i}} R_{e_j}=-R_{\overline{e_j}} R_{e_i}\), whenever \(i\ne j\), following easily from (11). We shall also keep the notation from the proof of the main theorem and omit the wedge product symbol for the sake of brevity.

1.1 The Parts \(\Psi _{80}\) and \(\Psi _{08}\)

As already shown in Lemma 5.2, both these parts consist of one element each. Namely, \(\Psi _{80}=8! \,\mathrm{{d}}x^0\cdots \mathrm{{d}}x^7\) and \(\Psi _{08}=8! \,\mathrm{{d}}y^0\cdots \mathrm{{d}}y^7\).

1.2 The Parts \(\Psi _{62}\) and \(\Psi _{26}\)

According to (23) we have

$$\begin{aligned} 4\,\Psi _{62}&=4\sum \langle R_{e_{i_4}} R_{\overline{e_{i_5}}}R_{e_{{i_6}}}R_{\overline{e_ {i_7}}} R_{e_{{i_3}}} R_{\overline{e_{i_2}}} R_{e_{{i_1}}} R_{\overline{ e_{i_0}}}(1), 1\rangle \\ {}&\quad \,\mathrm{{d}}y^{i_0}\mathrm{{d}}x^{i_1}\mathrm{{d}}x^{i_2}\mathrm{{d}}x^{i_3}\mathrm{{d}}y^{i_4}\mathrm{{d}}x^{i_5}\mathrm{{d}}x^{i_6}\mathrm{{d}}x^{i_7}, \end{aligned}$$

or, after reordering the canonical 1-forms,

$$\begin{aligned} 4\,\Psi _{62}&=-4\sum \langle R_{e_{i_7}} R_{\overline{e_{i_3}}}R_{e_{{i_4}}}R_{\overline{e_ {i_5}}} R_{e_{{i_2}}} R_{\overline{e_{i_1}}} R_{e_{{i_0}}} R_{\overline{ e_{i_6}}}(1), 1\rangle \,\mathrm{{d}}x^{i_0}\cdots \mathrm{{d}}x^{i_5}\mathrm{{d}}y^{i_6}\mathrm{{d}}y^{i_7}. \end{aligned}$$

Clearly, a general term

$$\begin{aligned} -4 \langle R_{e_{i_7}} R_{\overline{e_{i_3}}}R_{e_{{i_4}}}R_{\overline{e_ {i_5}}} R_{e_{{i_2}}} R_{\overline{e_{i_1}}} R_{e_{{i_0}}} R_{\overline{ e_{i_6}}}(1), 1\rangle \,\mathrm{{d}}x^{i_0}\cdots \mathrm{{d}}x^{i_5}\mathrm{{d}}y^{i_6}\mathrm{{d}}y^{i_7} \end{aligned}$$
(41)

of this sum is possibly non-trivial only if \(\#\{i_0,\dots ,i_5\}=6\) and \(\#\{i_6,i_7\}=2\). Hence, there are just three eventualities for \(\#\{i_0,\dots ,i_7\}\): 6, 7 or 8. Further necessary condition on non-triviality of (41) is obviously, in a sense of Remark 5.3,

$$\begin{aligned} \prod _{k=0}^7e_{i_k}=\pm 1. \end{aligned}$$
(42)

First, suppose \(\#\{i_0,\dots ,i_7\}=8\). This means all indices in (41) are distinct and the inner product there is thus totally skew-symmetric. Therefore, there are \({8\atopwithdelims ()2}=28\) distinct terms of this kind, each corresponding to a different set \(\{i_6,i_7\}\), all with coefficients \(\pm 4\cdot 2!\cdot 6!=\pm 8\cdot 6!\).

Second, let \(\#\{i_0,\dots ,i_7\}=7\), i.e. let precisely two indices coincide in (41). Then (42) requires that the product of six distinct basis vectors equals \(\pm 1\). According to (38), this would however mean that the product of the two remaining (and distinct) basis elements is also \(\pm 1\), which is impossible. We conclude, therefore, that there is no non-trivial term of this kind.

Finally, suppose \(\#\{i_0,\dots ,i_7\}=6\), i.e. \(\{i_6,i_7\}\subset \{i_0,\dots ,i_5\}\). In particular, \(i_6\) agrees with precisely one element in \(\{i_0,\dots ,i_5\}\) and thus, after commuting the operator \(R_{\overline{e_{i_6}}}\) leftwards, (41) takes the form

$$\begin{aligned} +4\,\langle R_{e_{i_7}} R_{\overline{e_{i_6}}}R_{e_{{i_3}}}R_{\overline{e_ {i_4}}} R_{e_{{i_5}}} R_{\overline{e_{i_2}}} R_{e_{{i_1}}} R_{\overline{ e_{i_0}}}(1), 1\rangle \,\mathrm{{d}}x^{i_0}\cdots \mathrm{{d}}x^{i_5}dy^{i_6}\mathrm{{d}}y^{i_7} \end{aligned}$$

that is totally skew-symmetric in \(i_6,i_7\) and in \(i_0,\dots ,i_5\), respectively. The inner product is, however, non-zero precisely when the product of the basis elements of indices \(\{i_0,\cdots ,i_5\}\backslash \{i_6,i_7\}\) is \(\pm 1\). So, as shown during the proof of Lemma 5.4, there are 14 possibilities for the set \(\{i_0,\cdots ,i_5\}\backslash \{i_6,i_7\}\) and to each of them there are \({4\atopwithdelims ()2}=6\) choices of \(\{i_6,i_7\}\). Therefore, there are \(6\cdot 14=84\) terms of this kind, each with prefactor \(\pm 4\cdot 2!\cdot 6!=\pm 8\cdot 6!\).

The case of \(\Psi _{26}\) is completely analogous.

1.3 The Part \(\Psi _{44}\)

Now we have

$$\begin{aligned} 6\,\Psi _{44}&=-10\sum \langle ((\overline{e_{i_0}}e_{i_1})\overline{e_{i_2}})e_{i_3}, \overline{((\overline{ e_{i_4}}e_{i_5})\overline{ e_{i_6}})e_{i_7}}\rangle \,\mathrm{{d}}y^{i_0}\mathrm{{d}}x^{i_1}\mathrm{{d}}x^{i_2}dx^{i_3}\mathrm{{d}}x^{i_4}\mathrm{{d}}y^{i_5}\mathrm{{d}}y^{i_6}\mathrm{{d}}y^{i_7}, \end{aligned}$$

so, after reordering, a general term takes the form

$$\begin{aligned} -10 \langle ((\overline{e_{i_4}}e_{i_0})\overline{e_{i_1}})e_{i_2}, \overline{((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}}\rangle \,\mathrm{{d}}x^{i_0}\cdots \mathrm{{d}}x^{i_3}\mathrm{{d}}y^{i_4}\cdots \mathrm{{d}}y^{i_7}, \end{aligned}$$
(43)

that is only non-trivial if \(\#\{i_0,\dots ,i_3\}=\#\{i_4,\dots ,i_7\}=4\), i.e. \(4\le \#\{i_0,\dots ,i_7\}\le 8\). Due to the higher complexity of this case, we introduce the following product of indices: \((i,j)\mapsto {ij}\), where ij is the (unique) element of \(\{0,\dots ,7\}\) such that \(e_{ij}=\pm e_ie_j\). Such a product is clearly commutative as well as associative (see Remark 5.3). The condition (42), which of course still applies, translates in this language as

$$\begin{aligned} \prod _{k=0}^7i_k=0. \end{aligned}$$
(44)

Let \(\#\{i_0,\dots ,i_7\}=8\), i.e. \(\{i_0,\dots ,i_3\}\cap \{i_4,\dots ,i_7\}=\emptyset \). We shall distinguish two cases here. First, suppose \(i_0i_1i_2i_3=0\). Then (44) is only fulfilled if \(i_4i_5i_6i_7=0\) too, i.e. if \(i_5i_6i_7=i_4\). Since \(i_3\ne i_4\), one has \(i_5i_6i_7\ne i_3\) and thus \(i_3i_5i_6i_7\ne 0\). Therefore \(\overline{((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}}=-((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}\) and so (43) takes the form

$$\begin{aligned}&+10\,\langle ((\overline{e_{i_4}}e_{i_0})\overline{e_{i_1}})e_{i_2}, ((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}\rangle \,\mathrm{{d}}x^{i_0}\cdots \mathrm{{d}}x^{i_3}\mathrm{{d}}y^{i_4}\cdots \mathrm{{d}}y^{i_7}\\&\quad =+10\langle R_{e_{i_3}} R_{\overline{e_{i_5}}}R_{e_{{i_6}}}R_{\overline{e_ {i_7}}} R_{e_{{i_2}}} R_{\overline{e_{i_1}}} R_{e_{{i_0}}} R_{\overline{ e_{i_4}}}(1), 1\rangle \,\mathrm{{d}}x^{i_0}\cdots \mathrm{{d}}x^{i_3}\mathrm{{d}}y^{i_4}\cdots \mathrm{{d}}y^{i_7}, \end{aligned}$$

that is again totally skew-symmetric and thus the coefficient is \(\pm 10\cdot 4!\cdot 4!=\pm 8\cdot 6!\). We have already shown above that there exist 14 distinct sets \(\{i_0,\dots ,i_3\}\), such that \(i_0i_1i_2i_3=0\), and there are therefore 14 terms of this kind. Second, if \(i_0i_1i_2i_3\ne 0\) then, by (44), also \(i_4i_5i_6i_7\ne 0\) and thus \(i_5i_6i_7\ne i_4\). If, for instance, \(i_5i_6i_7= i_5\), then \(i_6=i_7\), which is impossible. Similarly one shows that \(i_5i_6i_7\ne i_6\) and \(i_5i_6i_7\ne i_7\). It is therefore necessary that \(i_5i_6i_7\in \{i_0,i_1,i_2,i_3\}\). If \(i_5i_6i_7=i_3\), we have \(\overline{((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}}=((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}\) and (43) reads

$$\begin{aligned} -10\,\langle ((\overline{e_{i_4}}e_{i_0})\overline{e_{i_1}})e_{i_2}, ((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}\rangle \,\mathrm{{d}}x^{i_0}\cdots dx^{i_3}\mathrm{{d}}y^{i_4}\cdots \mathrm{{d}}y^{i_7}. \end{aligned}$$

In the three other cases \(i_5i_6i_7\in \{i_0,i_1,i_2\}\), \(\overline{((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}}=-((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}\) and (43) equals

$$\begin{aligned} +10\,\langle ((\overline{e_{i_4}}e_{i_0})\overline{e_{i_1}})e_{i_2}, ((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}\rangle \,\mathrm{{d}}x^{i_0}\cdots \mathrm{{d}}x^{i_3}\mathrm{{d}}y^{i_4}\cdots \mathrm{{d}}y^{i_7}. \end{aligned}$$

Hence, the coefficient in front of such a term is \(\pm \left( \frac{-1+3}{4}\right) \cdot 10\cdot 4!\cdot 4!=\pm 4\cdot 6!\). As discussed in the proof of Lemma 5.4, there are 56 sets \(\{i_0,\dots ,i_3\}\) with \(i_0i_1i_2i_3\ne 0\) and so is the number of the corresponding terms.

If \(\#\{i_0,\dots ,i_7\}=7\), then (44) could never be fulfil from exactly the same reason as in the case of \(\Psi _{62}\). There is, hence, no such term again.

Let \(\#\{i_0,\dots ,i_7\}=6\), and denote \(\{j_0,\dots ,j_3\}:=\{i_0,\dots ,i_3\}\) and \(\{j_2,\dots ,j_5\}:=\{i_4,\dots ,i_7\}\). According to (44), we may assume \(j_0j_1j_4j_5=0\), i.e. \(j_0j_1=j_4j_5\). Let \(\varepsilon _1,\varepsilon _2=\pm 1\) be such that

$$\begin{aligned} \overline{((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}}&=\varepsilon _1((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7},\\ R_{e_{i_3}} R_{\overline{e_{i_5}}}R_{e_{{i_6}}}R_{\overline{e_ {i_7}}} R_{e_{{i_2}}} R_{\overline{e_{i_1}}} R_{e_{{i_0}}} R_{\overline{ e_{i_4}}}&=\varepsilon _2 R_{e_{i_5}} R_{\overline{e_{i_6}}}R_{e_{{i_7}}}R_{\overline{e_ {i_4}}} R_{e_{{i_3}}} R_{\overline{e_{i_2}}} R_{e_{{i_1}}} R_{\overline{ e_{i_0}}}. \end{aligned}$$

Using this notation, a general term (43) takes the form

$$\begin{aligned} 6\,\Psi _{44}=-10\, \varepsilon _1\varepsilon _2 \langle R_{e_{i_5}} R_{\overline{e_{i_6}}}R_{e_{{i_7}}}R_{\overline{e_ {i_4}}} R_{e_{{i_3}}} R_{\overline{e_{i_2}}} R_{e_{{i_1}}} R_{\overline{ e_{i_0}}}(1), 1\rangle \,\mathrm{{d}}x^{i_0}\cdots dx^{i_3}\mathrm{{d}}y^{i_4}\cdots \mathrm{{d}}y^{i_7}. \end{aligned}$$

In what follows, we shall discuss how the sign \(\varepsilon _1\varepsilon _2\) alternates for different positions of \(i_3\) within \(\{j_0,\dots ,j_3\}\) and of \(i_4\) within \(\{j_2,\dots ,j_5\}\). Let us distinguish two separate cases. First, assume \(j_0j_1j_2j_3=0\) or equivalently \(j_0j_1=j_2j_3\). Then, if \(i_3=j_0\) and \(i_4=j_2\), for instance, one has \(\{i_5,i_6,i_7\}=\{j_3,j_4,j_5\}\) and \(\{i_0,i_1,i_2\}=\{j_1,j_2,j_3\}\). Therefore,

$$\begin{aligned} i_3i_5i_6i_7=j_0j_3j_4j_5=j_0j_3j_2j_3=j_0j_2\ne 0, \end{aligned}$$

meaning \(((\overline{ e_{i_3}}e_{i_5})\overline{ e_{i_6}})e_{i_7}\ne \pm 1\) and thus \(\varepsilon _1=-1\). Further, since \(i_3\notin \{i_5,i_6,i_7\}\), \(i_4\notin \{i_0,i_1,i_2\}\) and \(i_3\ne i_4\), respectively, we can write

$$\begin{aligned} R_{e_{i_3}} R_{\overline{e_{i_5}}}R_{e_{{i_6}}}R_{\overline{e_ {i_7}}} R_{e_{{i_2}}} R_{\overline{e_{i_1}}} R_{e_{{i_0}}} R_{\overline{ e_{i_4}}}&= -R_{e_{i_5}} R_{\overline{e_{i_6}}}R_{e_{{i_7}}}R_{\overline{e_ {i_3}}} R_{e_{{i_2}}} R_{\overline{e_{i_1}}} R_{e_{{i_0}}} R_{\overline{ e_{i_4}}} \\&= -R_{e_{i_5}} R_{\overline{e_{i_6}}}R_{e_{{i_7}}}R_{\overline{e_ {i_3}}} R_{e_{{i_4}}} R_{\overline{e_{i_2}}} R_{e_{{i_1}}} R_{\overline{ e_{i_0}}} \\&= R_{e_{i_5}} R_{\overline{e_{i_6}}}R_{e_{{i_7}}}R_{\overline{e_ {i_4}}} R_{e_{{i_3}}} R_{\overline{e_{i_2}}} R_{e_{{i_1}}} R_{\overline{ e_{i_0}}}, \end{aligned}$$

and thus \(\varepsilon _2=+1\). The signs corresponding to the other positions of \(i_3\) and \(i_4\) are computed analogically and summarised in Table 1. One can observe from the table that \(\varepsilon _1\varepsilon _2\) equals +1 in precisely 8 cases and -1 in the 8 others, from which we conclude that the corresponding term is trivial in the end. We may thus assume \(j_0j_1j_2j_3\ne 0\). Then it is easily seen that the eight indices \(j_0\), \(j_1\), \(j_2\), \(j_3\), \(j_0j_1j_2\), \(j_0j_1j_3\), \(j_0j_2j_3\) and \(j_1j_2j_3\) are all distinct. Therefore, \(j_4\) and \(j_5\) must be among the last four ones. The requirement \(j_0j_1j_4j_5=0\) however chooses the last two ones. Without loss of generality, we thus have \(j_4=j_0j_2j_3\) and \(j_5=j_1j_2j_3\). Now we investigate the behaviour of the sign \(\varepsilon _1\varepsilon _2\) again, taking into account that \(j_0j_4=j_1j_5=j_2j_3\). The results are captured in Table 2. Clearly, \(\varepsilon _2\) stays the same as in the case \(j_0j_1j_2j_3=0\) but \(\varepsilon _1\) alternates so that \(\varepsilon _1\varepsilon _2\) is positive only in 4 cases and negative otherwise. This means that the corresponding term appears with the coefficient \(\pm \left( \frac{-12+4}{16}\right) \cdot 10\cdot 4!\cdot 4!=\pm 4\cdot 6!\). Regarding the number of such terms, there are 56 options for \(\{j_0,\dots ,j_3\}\), \(j_0j_1j_2j_3\ne 0\), and for each of them there are \({4\atopwithdelims ()2}=6\) possible partitions into \(\{j_0,j_1\}\) and \(\{j_2,j_3\}\). Since \(\{j_4,j_5\}\) is then uniquely determined, there are altogether \(56\cdot 6=336\) terms of this kind.

Table 1 The signs \(\varepsilon _1\varepsilon _2\) in the case \(j_0j_1j_2j_3=0\)
Table 2 The signs \(\varepsilon _1\varepsilon _2\) in the case \(j_0j_1j_2j_3\ne 0\)
Table 3 Explicit expression of the form \(-\frac{1}{4\cdot 6!}\Psi _8\) in the standard basis

Further, suppose that \(\#\{i_0,\dots ,,i_7\}=5\), i.e. that \(\{i_0,\dots ,i_3\}\cap \{i_4,\dots ,i_7\}\) contains precisely three indices. (44) requires that the product of the two (distinct) elements of \(\{i_0,\dots ,i_7\}\) that do not belong to this intersection is 0. This is again impossible and thus there are no terms here either.

Finally, let \(\#\{i_0,\dots ,,i_7\}=4\), i.e. \(\{i_0,\dots ,i_3\}=\{i_4,\dots ,i_7\}\). First, assume \(i_0i_1i_2i_3=0\). If \(i_3=i_4\), then it is easily seen that \(\varepsilon _1=\varepsilon _2=1\). If \(i_3\ne i_4\), then \(\varepsilon _1=\varepsilon _2=-1\). In any case \(\varepsilon _1\varepsilon _2=1\) and so 14 of these terms have all coefficients \(\pm 10\cdot 4!\cdot 4!=\pm 8\cdot 6!\). Second, if \(i_0i_1i_2i_3\ne 0\), then \(\varepsilon _1=-1\) regardless the relation between \(i_3\) and \(i_4\). Since \(\varepsilon _2\) does not change from the previous case, for any \(i_3\) we have \(\varepsilon _1\varepsilon _2=-1\) if \(i_4=i_3\) and \(\varepsilon _1\varepsilon _2=1\) in the three other cases of \(i_4\ne i_3\). Altogether, the prefactors of these 56 terms are \(\pm \left( \frac{-1+3}{4}\right) \cdot 10\cdot 4!\cdot 4!=\pm 4\cdot 6!\).

1.4 Summary

All in all, the expression of \(\Psi _8\) in the standard basis possesses 702 non-trivial terms. They are summarised in Table 3. Each block of the table corresponds to one summand in (40). Each row of the table stands for a particular class of terms of \(-\frac{1}{4\cdot 6!}\Psi _8\). A general term of the class is stated in the second column and the class is further specified in the third column. In the first column, the coefficient standing in front of the terms from the respective class is given. Let us remark that we scaled the form \(\Psi _8\) by \(-\frac{1}{4\cdot 6!}\) in order to adhere to the conventions of [57]. Notice that the signs of the coefficients can be explicitly determined directly from the aforedescribed construction. Finally, the number of non-trivial terms within each class is given in the fourth column. Throughout the table, we assume \(i_k\ne i_l\) if \(k\ne l\). Recall also that the product of indices is taken in the following sense: \(e_{ij}=\pm e_ie_j\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotrbatý, J. Octonion-Valued Forms and the Canonical 8-Form on Riemannian Manifolds with a Spin(9)-Structure. J Geom Anal 30, 3616–3640 (2020). https://doi.org/10.1007/s12220-019-00209-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00209-z

Keywords

Mathematics Subject Classification

Navigation