Skip to main content
Log in

Pointwise Bounds for Steklov Eigenfunctions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \((\Omega ,g)\) be a compact, real-analytic Riemannian manifold with real-analytic boundary \(\partial \Omega .\) The harmonic extensions of the boundary Dirichlet-to-Neumann eigenfunctions are called Steklov eigenfunctions. We show that the Steklov eigenfunctions decay exponentially into the interior in terms of the Dirichlet-to-Neumann eigenvalues and give a sharp rate of decay to first order at the boundary. The proof uses the Poisson representation for the Steklov eigenfunctions combined with sharp h-microlocal concentration estimates for the boundary Dirichlet-to-Neumann eigenfunctions near the cosphere bundle \(S^*\partial \Omega .\) These estimates follow from sharp estimates on the concentration of the FBI transforms of solutions to analytic pseudodifferential equations \(Pu=0\) near the characteristic set \(\{\sigma (P)=0\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bellová, K., Lin, F.-H.: Nodal sets of Steklov eigenfunctions. Calc. Var. Partial Differ. Equ. 54(2), 2239–2268 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, vol. 203, 2nd edn. Birkhäuser Boston, Inc., Boston, MA (2010)

  3. Girouard, A., Polterovich, I.: Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory 7(2), 321–359 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Girouard, A., Parnovski, L., Polterovich, I., Sher, D.A.: The Steklov spectrum of surfaces: asymptotics and invariants. Math. Proc. Cambridge Philos. Soc. 157(3), 379–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guillemin, V., Stenzel, M.: Grauert tubes and the homogeneous Monge-Ampère equation. J. Differ. Geom. 34(2), 561–570 (1991)

    Article  MATH  Google Scholar 

  6. Hislop, P.D., Lutzer, C.V.: Spectral asymptotics of the Dirichlet-to-Neumann map on multiply connected domains in \({{\mathbb{R}}^d}\). Inverse Probl. 17(6), 1717–1741 (2001)

    Article  MATH  Google Scholar 

  7. Helffer, B.,  Sjöstrand, B.: Résonances en limite semi-classique. Mém. Soc. Math. France (N.S.) (24-25), iv+228 (1986)

  8. Jin, L.: Semiclassical Cauchy estimates and applications. Trans. Am. Math. Soc. 369(2), 975–995 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lebeau, G.: The complex Poisson kernel on a compact analytic Riemannian manifold. preprint (2013)

  10. Leichtnam, E., Golse, F., Stenzel, M.: Intrinsic microlocal analysis and inversion formulae for the heat equation on compact real-analytic Riemannian manifolds. Ann. Sci. École Norm. Sup. (4) 29(6), 669–736 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lempert, L., Szőke, R.: Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds. Math. Ann. 290(4), 689–712 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Martinez, A.: Estimates on complex interactions in phase space. Math. Nachr. 167, 203–254 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Martinez, A.: Microlocal exponential estimates and applications to tunneling. In: Microlocal analysis and spectral theory (Lucca, 1996). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 490, pp. 349–376. Kluwer Acad. Publ., Dordrecht (1997)

  14. Nakamura, S.: On Martinez’ method of phase space tunneling. Rev. Math. Phys. 7(3), 431–441 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Polterovich, I., Sher, D.A., Toth, J.A.: Nodal length of Steklov Eigenfunctions on real-analytic Riemannian surfaces (2015). arXiv preprint arXiv:1506.07600

  16. Shamma, S.E.: Asymptotic behavior of Stekloff eigenvalues and eigenfunctions. SIAM J. Appl. Math. 20, 482–490 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sjöstrand, J.: Singularités analytiques microlocales. Astérisque. 95, vol. 95 of Astérisque, pp. 1–166. Soc. Math. France, Paris (1982)

  18. Sjöstrand, J.: Density of resonances for strictly convex analytic obstacles. Can. J. Math. 48(2), 397–447, (1996) With an appendix by M. Zworski

  19. Sjöstrand, J., Uhlmann, G.: Local analytic regularity in the linearized Calderón problem. Anal. PDE 9(3), 515–544 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sogge, C.D., Wang, X., Zhu, J.: Lower bounds for interior nodal sets of Steklov eigenfunctions. Proc. Am. Math. Soc. 144(11), 4715–4722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taylor, M.E.: Partial differential equations II. In: Qualitative Studies of Linear Equations. Applied Mathematical Sciences, vol. 116, 2nd edn. Springer, New York (2011)

  22. Toth, J.: Eigenfunction decay estimates in the quantum completely integrable cas. Duke Math. J. 93(2), 231–255 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yau, S.T.: Survey on partial differential equations in differential geometry. In: Seminar on Differential Geometry. Ann. of Math. Stud., vol. 102, pp. 3–71. Princeton Univ. Press, Princeton (1982)

  24. Yau, S.-T.: Open problems in geometry. In: Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990). Proc. Sympos. Pure Math., vol. 54, pp. 1–28. American Mathematical Society, Providence (1993)

  25. Zelditch, S.: Pluri-potential theory on Grauert tubes of real analytic Riemannian manifolds, I. In: Spectral Geometry. Proc. Sympos. Pure Math., vol. 84 , pp. 299–339. American Mathematical Society, Providence, RI (2012)

  26. Zelditch, S.: Hausdorff measure of nodal sets of analytic Steklov eigenfunctions. Math. Res. Lett. 22(6), 1821–1842 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhu, J.: Doubling property and vanishing order of Steklov eigenfunctions. Commun. Partial Differ. Equ. 40(8), 1498–1520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, J.: Interior nodal sets of Steklov eigenfunctions on surfaces. Anal. PDE 9(4), 859–880 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence, RI (2012)

Download references

Acknowledgements

The authors would like to thank Iosif Polterovich and Steve Zelditch for their comments on an earlier version of this paper. Thanks also to Andras Vasy and Maciej Zworski for valuable suggestions. Finally, thanks to the anonymous referee for many helpful suggestions. J.G. is grateful to the National Science Foundation for support under the Mathematical Sciences Postdoctoral Research Fellowship DMS-1502661. The research of J.T. was partially supported by NSERC Discovery Grant # OGP0170280 and an FRQNT Team Grant. J.T. was also supported by the French National Research Agency project Gerasic-ANR- 13-BS01-0007-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Galkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkowski, J., Toth, J.A. Pointwise Bounds for Steklov Eigenfunctions. J Geom Anal 29, 142–193 (2019). https://doi.org/10.1007/s12220-018-9984-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-9984-7

Keywords

Mathematics Subject Classification

Navigation