Skip to main content
Log in

Topology and Complex Structures of Leaves of Foliations by Riemann Surfaces

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study conformal structure and topology of leaves of singular foliations by Riemann surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We recall that a Riemann surface \(Y\subset X\) is weakly directed by \({\mathcal {L}}\) if \(Y\setminus E\) is locally contained in a leaf.

  2. We recall that this means that \(f(\mathbb C)\setminus E\) is locally contained in leaves.

  3. By this we mean that \(\rho \) is continuous (resp. upper or lower semi-continuous) on X at all points \(p\in L\), if L is any leaf without holonomy. In what follows, this will always be our meaning of the word “continuous”.

  4. The proof is the same as that of [10] Theorem 15; if there is no such \(c>0\) one obtains an image of \(\mathbb C\) weakly directed by \({\mathcal {L}}\) using Brody’s reparametrization Lemma.

  5. In the situation at hand, we can also see this directly in two ways. First, the current T is of order zero, and since for any function g defined on E, we can solve the equation \(\partial \overline{\partial }\varphi |_E=g\), the condition that \(\partial \overline{\partial }T=0\) implies that the mass is not concentrated on E. Second, the current cannot have compact support in a domain that carries a strictly plurisubharmonic function \(\phi \), since we would get \(\langle T,i\partial \overline{\partial }(\chi \phi )\rangle >0\) for a suitable cutoff function \(\chi \)

References

  1. Beardon, A.F.: Inequalities for certain Fuchsian groups. Acta Math. 127, 221–258 (1971)

    Article  MathSciNet  Google Scholar 

  2. Brunella, M.: Inexistence of invariant measures for generic rational differential equations in the complex domain. Bol. Soc. Mat. Mex. 3 12(1), 43–49 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Candel, A., Gómez-Mont, X.: Uniformization of the leaves of a rational vector field. Ann. Inst. Fourier (Grenoble) 45(4), 1123–1133 (1995)

    Article  MathSciNet  Google Scholar 

  4. Cantwell, J., Conlon, L.: Generic leaves. Comment. Math. Helv. 73, 306–336 (1998)

    Article  MathSciNet  Google Scholar 

  5. Cantwell, J., Conlon, L.: Every surface is a leaf. Topology 26, 265–285 (1987)

    Article  MathSciNet  Google Scholar 

  6. Epstein, D.B.A., Millett, K.C., Tischler, D.: Leaves without holonomy. J. London Math. Soc. (2) 16(3), 548–552 (1977)

    Article  MathSciNet  Google Scholar 

  7. Fernández, J.: The limit set of Fuchsian and Kleinian groups. Extracta Math. 4(1), 1–20 (1989)

    MathSciNet  Google Scholar 

  8. Forstnerič, F.: Stein Manifolds and Holomorphic Mappings. The Homotopy Principle in Complex Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 56. Springer, Heidelberg (2011)

    Google Scholar 

  9. Fornæss, J.E., Sibony, N.: Unique ergodicity of harmonic currents on singular foliations of \({\mathbb{P}}^2\). GAFA 19, 1334–1377 (2010)

    MATH  Google Scholar 

  10. Fornæss, J.E., Sibony, N.: Riemann surface laminations with singularities. J. Geom. Anal. 18, 400–442 (2008)

    Article  MathSciNet  Google Scholar 

  11. Fornæss, J.E., Sibony, N.: Harmonic currents of finite energy and laminations. GAFA 15(5), 962–1003 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Fornæss, J.E., Sibony, N., Wold, E.F.: Examples of minimal laminations and associated currents. Math. Z. 269(1–2), 495–520 (2011)

    Article  MathSciNet  Google Scholar 

  13. Garnett, L.: Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51(3), 285–311 (1983)

    Article  MathSciNet  Google Scholar 

  14. Ghys, E.: Laminations par surfaces de Riemann. Dynamique et géométrie complexes (Lyon, 1997). Panoramas et synthéses 8. The Société Mathématique de France, Paris (1999)

  15. Ghys, E.: Topologie des feuilles génériques. Ann. Math. (2) 141(2), 387–422 (1995)

    Article  MathSciNet  Google Scholar 

  16. Glutsyuk, A.A.: Hyperbolicity of the leaves of a generic one-dimensional holomorphic foliation on a nonsingular projective algebraic variety. Tr. Mat. Inst. Steklova 213 (1997), Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 90–111; translation in Proc. Steklov Inst. Math. 1996, no. 2 (213), 83–103

  17. Goncharuk, N., Kundryashov, Y.: Genera of non algebraic leaves of polynomial foliations in \({\mathbb{C}}^2\). arXiv: 14017878

  18. He, Z.-X., Schramm, O.: Fixed points, Koebe uniformization and circle packings. Ann. Math. (2) 137(2), 369–406 (1993)

    Article  MathSciNet  Google Scholar 

  19. Hector, G.: Architecture des feuilletages de classe \(C2\). In: Third Schnepfenried geometry conference, Vol. 1, pp. 243–258 (Schnepfenried 1982)

  20. Ilyashenko, Y.: Some open problems in real and complex dynamical systems. Nonlinearity 21(7), T101 (2008)

    Article  MathSciNet  Google Scholar 

  21. Lins, N.A.: Uniformization and the Poincaré metric on the leaves of a foliation by curves. Bol. Soc. Brasil. Mat. 31(3), 351–366 (2000)

    Article  MathSciNet  Google Scholar 

  22. Lins Neto, A.: Simultaneous uniformization for the leaves of projective foliations by curves. Bol. Soc. Brasil. Mat. (N.S.) 25(2), 181–206 (1994)

    Article  MathSciNet  Google Scholar 

  23. Maskit, B.: On Klein’s combination theorem. Trans. Am. Math. Soc. 120, 499–509 (1965)

    MathSciNet  MATH  Google Scholar 

  24. Mane, R., Sad, P., Sullivan, D.: On the dynamics of rational maps. Ann. Sci. Ecole Norm. Sup. (4) 16(2), 193–217 (1983)

    Article  MathSciNet  Google Scholar 

  25. Myrberg, P.J.: Über die Existenz Der Greenschen Funktionen auf Einer Gegebenen Riemannschen Fläche. Acta Math. 61(1), 39–79 (1933)

    Article  MathSciNet  Google Scholar 

  26. Narasimhan, R.: Complex Analysis in One Variable, 2nd edn. Birkhäuser Boston Inc, Boston, MA (2001)

    Book  Google Scholar 

  27. Păun, M., Sibony, N.: Value distribution theory for parabolic Riemann surfaces. arXiv:1403.6596

  28. Pommerenke, C.: On Fuchsian groups of accessible type. Ann. Acad. Sci. Fen. 7, 249–258 (1982)

    MathSciNet  MATH  Google Scholar 

  29. Rajeswara Rao, K.V.: Fuchsian groups of convergence type and Poincaré series of dimension -2, J. Math. Mech. 18, 629–644 (1968/1969)

  30. Royden, H.L.: The extension of regular holomorphic maps. Proc. AMS 43, 306–310 (1974)

    Article  MathSciNet  Google Scholar 

  31. Skoda, H.: Prolongements des courants positifs fermés de masse finie. Invent. Math. 66, 361–376 (1982)

    Article  MathSciNet  Google Scholar 

  32. Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen Co. Ltd, Tokyo (1959)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for a very thorough reading, and many useful suggestions for improvements. They would also like to M. Kapovich for providing them with a reference to the Klein–Maskit Combination Theorem in connection to the construction in Example 6.6., as well as for other useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlend Fornæss Wold.

Additional information

In memory of Gennadi M. Henkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Erlend Fornæss Wold is supported by NRC Grant Number 240569. Part of this work was done during the international research programme “Several Complex Variables and Complex Dynamics” at the Centre for Advanced Study at the Academy of Science and Letters in Oslo during the academic year 2016/2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibony, N., Wold, E.F. Topology and Complex Structures of Leaves of Foliations by Riemann Surfaces. J Geom Anal 30, 2593–2614 (2020). https://doi.org/10.1007/s12220-017-9975-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9975-0

Keywords

Mathematics Subject Classification

Navigation