Skip to main content
Log in

Higher Critical Points in an Elliptic Free Boundary Problem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study higher critical points of the variational functional associated with a free boundary problem related to plasma confinement. Existence and regularity of minimizers in elliptic free boundary problems have already been studied extensively. But because the functionals are not smooth, standard variational methods cannot be used directly to prove the existence of higher critical points. Here we find a nontrivial critical point of mountain pass type and prove many of the same estimates known for minimizers, including Lipschitz continuity and nondegeneracy. We then show that the free boundary is smooth in dimension 2 and prove partial regularity in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we are using the well known fact that \(\displaystyle \int _{\{u=1\}} |\nabla u|^2 \, \mathrm{d}x = 0\).

References

  1. Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Alt, H.W., Caffarelli, L.A., Friedman, A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282(2), 431–461 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki, H., Caffarelli, L.A., Nirenberg, L.: Uniform estimates for regularization of free boundary problems. In: Analysis and Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 122, pp. 567–619. Dekker, New York (1990)

  4. Bonforte, M., Grillo, G., Vazquez, J.L.: Quantitative bounds for subcritical semilinear elliptic equations

  5. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. Commun. Pure Appl. Math. 39(S, suppl.):S41–S45 (1986). Frontiers of the mathematical sciences: (1985) (New York, 1985)

  6. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are \(C^{1,\alpha }\). Rev. Mat. Iberoam. 3(2), 139–162 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on \(X\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15(4), 583–602 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L.A.: A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz. Commun. Pure Appl. Math. 42(1), 55–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caffarelli, L.A., Jerison, D., Kenig, C.E.: Some new monotonicity theorems with applications to free boundary problems. Ann. Math. 155(2), 369–404 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caffarelli, L.A., Friedman, A.: Asymptotic estimates for the plasma problem. Duke Math. J. 47(3), 705–742 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L., Salsa, S.: Graduate Studies in Mathematics. A Geometric Approach to Free Boundary Problems, vol. 68. American Mathematical Society, Providence (2005)

    Google Scholar 

  12. Caffarelli, L.A., Jerison, D., Kenig, C.E.: Global energy minimizers for free boundary problems and full regularity in three dimensions. In: Noncompact Problems at the Intersection of Geometry, Analysis, and Topology. Contemporary Mathematics, vol. 350, pp. 83–97. American Mathematical Society, Providence (2004)

  13. De Silva, D., Jerison, D.: A singular energy minimizing free boundary. J. Reine Angew. Math. 635, 1–21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Studies in Advanced Mathematics. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    Google Scholar 

  15. Flucher, M., Wei, J.: Asymptotic shape and location of small cores in elliptic free-boundary problems. Math. Z. 228(4), 683–703 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedman, A., Liu, Y.: A free boundary problem arising in magnetohydrodynamic system. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22(3), 375–448 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem. J. Lond. Math. Soc. (2) 31(3), 566–570 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerison, D., Kamburov, N.: Structure of one phase free boundaries in the plane. Int. Math. Res. Notices

  19. Jerison, D., Perera, K.: Existence and regularity of higher critical points for elliptic free boundary problems. arXiv:1412.7976

  20. Jerison, D., Savin, O.: Some remarks on stability of cones for the one-phase free boundary problem. Geom. Func. Anal. 25(4), 1240–1257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kinderlehrer, D., Nirenberg, L.: Regularity in free boundary problems. Ann. Scuola Norm Sup. Pisa. Cl. Sci. (4) 4(2), 373–391 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Lederman, C., Wolanski, N.: A two phase elliptic singular perturbation problem with a forcing term. J. Math. Pures Appl. (9) 86(6), 552–589 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Perera, K., Schechter, M.: Cambridge Tracts in Mathematics. Topics in Critical Point Theory, vol. 198. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  24. Shibata, M.: Asymptotic shape of a least energy solution to an elliptic free-boundary problem with non-autonomous nonlinearity. Asymptot. Anal. 31(1), 1–42 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Rational Mech. Anal. 60(1), 51–73 (1975/76)

  26. Temam, R.: Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ. 2(6), 563–585 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weiss, G.S.: Partial regularity for weak solutions of an elliptic free boundary problem. Commun. Partial Differ. Equ. 23(3–4), 439–455 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weiss, G.S.: Partial regularity for a minimum problem with free boundary. J. Geom. Anal. 9(2), 317–326 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Y., Perera, K.: Existence and nondegeneracy of ground states in critical free boundary problems. arXiv:1405.1108

Download references

Acknowledgements

David Jerison was supported by NSF Grants DMS 1069225, DMS 1500771, and the Stefan Bergman Trust. This work was initiated while Kanishka Perera was visiting the Department of Mathematics at the Massachusetts Institute of Technology, and he is grateful for the kind hospitality of the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jerison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerison, D., Perera, K. Higher Critical Points in an Elliptic Free Boundary Problem. J Geom Anal 28, 1258–1294 (2018). https://doi.org/10.1007/s12220-017-9862-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9862-8

Keywords

Mathematics Subject Classification

Navigation