Skip to main content
Log in

On Three-Dimensional CR Yamabe Solitons

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we investigate the geometry and classification of three-dimensional CR Yamabe solitons and pseudo-gradient CR Yamabe solitons. In the compact case, we obtain a classification result of three-dimensional CR Yamabe solitons under the assumption that their potential functions are in the kernel of the CR Paneitz operator. In addition, we obtain a structure theorem on the diffeomorphism types of complete three-dimensional pseudo-gradient CR Yamabe solitons (shrinking, steady, or expanding) of vanishing torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, J., Chang, S.-C.: Pseudo-Einstein and \(Q\)-flat metrics with eigenvalue estimates on CR-hypersurfaces. Indiana Univ. Math. J. 56, 2840–2857 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, S.-C., Cheng, J.-H.: The Harnack estimate for the Yamabe flow on CR manifolds of dimension \(3\). Ann. Glob. Anal. Geom. 21, 111–121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, S.-C., Cheng, J.-H., Chiu, H.-L.: A fourth order curvature flow on a CR \(3\)-manifold. Indiana Univ. Math. J. 56, 1793–1825 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F. Ni, L.: The Ricci flow: Techniques and Applications, vol. 2—Part I: Geometric Aspects. American Mathematical Society, Providence (2007)

  5. Chang, S.-C., Chiu, H.-L.: On the CR analogue of Obata’s theorem in a pseudohermitian \(3\)-manifold. Math. Ann. 345, 33–51 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, S.-C., Chiu, H.-L., Wu, C.-T.: The Li–Yau–Hamilton inequality for Yamabe flow on a closed CR \(3\)-manifold. Trans. Am. Math. Soc. 362, 1681–1698 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chern, S.S., Hamilton, R.S.: On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds, vol. 1111, pp 279–308. Lecture Notes in Mathematics. Springer, Berlin (1985)

  8. Chow, W.-L.: Über System Von Linearen Partiellen Differentialgleichungen erster Orduung. Math. Ann. 117, 98–105 (1939)

    MathSciNet  MATH  Google Scholar 

  9. Chang, D.-C., Chang, S.-C., Kuo, T.-J., Lai, S.-H.: CR Li–Yau gradient estimate and linear entropy formulae for Witten Laplacian via Bakry–Emery pseudohermitian Ricci curvature. Asian J. Math. (accepted)

  10. Cheng, J.-H., Lee, J.M.: The Burns–Epstein invariant and deformation of the CR structures. Duke Math. J. 60, 221–254 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow, vol. 77. Graduate Texts in Mathematics. American Mathematical Society, Providence (2006)

  12. Catino, G., Mantegazza, C., Mazzieri, L.: On the global structure of conformal gradient solitons with nonnegative Ricci tensor. Commun. Contemp. Math. 14(6), 1250045 (2012)

  13. Chang, S.-C., Saotome, T.: The \(Q\)-curvature flow in a closed CR 3-manifold. In: Proceedings of the 15th International Workshop on Differential Geometry and the 4th KNUGRG-OCAMI Differential Geometry Workshop, vol. 15, pp. 57–69. The National Institute for Mathematical Sciences (NIMS), Taejŏn (2011)

  14. Cao, H.-D., Sun, X., Zhang, Y.: On the structure of gradient Yamabe solitons. Math. Res. Lett. 19, 767–774 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daskalopoulos, P., Sesum, N.: The classification of locally conformally flat Yamabe solitons. Adv. Math. 240, 346–369 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fefferman, C., Hirachi, K.: Ambient metric construction of \(Q\)-curvature in conformal and CR geometries. Math. Res. Lett. 10, 819–831 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gray, J.W.: Some global properties of contact structures. Ann. Math. 69, 421–450 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, C.R., Lee, J.M.: Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math. J. 57, 697–720 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hamilton, R.S.: The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), pp. 237–262. American Mathematical Society, Providence (1988)

  21. Hamilton, R.S.: The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamilton, R.S.: A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1, 113–126 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hamilton, R.S.: The Formation of Singularities in the Ricci Flow, Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), pp. 7–136. International Press, Cambridge (1995)

  24. Hirachi, K.: Scalar Pseudo-Hermitian Invariants and the Szegö Kernel on \(3\)-Dimensional CR Manifolds. Lecture Notes in Pure and Applied Mathematics, vol. 143, pp. 67–76. Dekker, New York (1992)

  25. Ho, P.T.: A note on compact CR Yamabe solitons. J. Geom. Phys. 94, 32–34 (2015)

  26. Hsu, S.-Y.: A note on compact gradient Yamabe solitons. J. Math. Anal. Appl. 388, 725–726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kamishima, Y., Tsuboi, T.: CR-structures on Seifert manifolds. Invent. Math. 104, 149–163 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, J.M.: Pseudo-Einstein structure on CR Manifolds. Am. J. Math. 110, 157–178 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee, J.M.: The Fefferman metric and pseudohermitian invariants. Trans. Am. Math. Soc. 296, 411–429 (1986)

    MATH  Google Scholar 

  30. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  31. Perelman, G.: Ricci flow with surgery on three manifolds. arXiv:math.DG/0303109

  32. Rumin, M.: Formes Différentielles sur les variétés de contact. J. Differ. Geom. 39, 281–330 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tachibana, S.: On harmonic tensors in compact Sasakian spaces. Tohoku Math. J. 17, 271–284 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Q.-M.: Isoparametric functions on Riemannian manifolds. I. Math. Ann. 277, 639–646 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors Shu-Cheng Chang and Chih-Wei Chen research supported in part by the NSC of Taiwan. We would like to thank Professor Feng Luo for very helpful discussions related to Theorem 1.3 and Professor Reiko Miyaoka for her comment during the 7th OCAMI-TIMS Workshop which led us to remove an extra assumption of Theorem 1.3 in an early version. The research of the first author was partially supported by the Science and Technology Development Fund (Macao S.A.R.) Grant FDCT/016/2013/A1, as well as RDG010 grant of University of Macau. Part of the project was done during the visit of the second and the third authors to the University of Macau in spring 2014. They would like to express their thanks to the institution for the warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Wei Chen.

Appendix

Appendix

We include some basic facts about isoparametric functions mentioned in Remark 5.1. Recall that our isoparametric potential function \(\varphi \) satisfies \(|\nabla \varphi |= b(\varphi )\) for some function \(b: \mathcal {R}\rightarrow \mathbb {R}\), where \(\mathcal {R}\) denotes the range of \(\varphi \).

Lemma 6.1

(cf. Lemma 3 in [34]) The only possible singular level sets of \(\varphi \) are the smooth focal submanifolds

$$\begin{aligned} \Sigma _+:= \{ \varphi = \max _{x\in M} \varphi (x)\}\ \text{ and } \ \Sigma _-:= \{\varphi = \min _{x\in M} \varphi (x)\}. \end{aligned}$$

Proof

We follow the argument in [34]. Suppose that \(b=|\nabla \varphi |=0\) on the level set \(\Sigma _{c}:= \{x\in M |\varphi (x) = c\}\) for some critical value \(c\in (\inf _{M}\varphi ,\sup _{M}\varphi )\). Then, there exists some number \(\epsilon >0\) sufficiently small so that c is the only critical value in interval \([c, c+\epsilon ]\). In particular, we have

$$\begin{aligned} \int _c^{c+\epsilon } \frac{1}{|\nabla \varphi |} \text {d}\varphi =\lim _{a\rightarrow c^{+}} \int _a^{c+\epsilon } \frac{1}{|\nabla \varphi |} \text {d}\varphi = \epsilon . \end{aligned}$$
(5.6)

On the other hand, since \(b\ge 0\) on \(\mathcal {R}\) and c is an interior point in \(\mathcal {R}\), one has \(b'=0\) at c so the function b is locally bounded by its Taylor’s reminder around c, i.e., \(b(x)\le A(x-c)^2\) for \(x\in [c, c+\epsilon ]\) and some constant \(A>0\). However, this would imply that

$$\begin{aligned} \int _c^{c+\epsilon } \frac{1}{|\nabla \varphi |} \text {d}\varphi \ge \int _c^{c+\epsilon } \frac{1}{A(x-c)^2} \text {d}\varphi =\infty , \end{aligned}$$

which contradicts (5.6). \(\square \)

Suppose that \(\varphi \) is locally a constant function on some open set U of M, then b and \(b'\) will vanish at the boundary of U, which is impossible as shown in the proof of Lemma 6.1 Therefore, we have the following lemma (which is used in the proof of Theorem 1.3).

Lemma 6.2

The non-constant potential function \(\varphi \) cannot be locally constant. In particular, its critical set is at most two-dimensional.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, HD., Chang, SC. & Chen, CW. On Three-Dimensional CR Yamabe Solitons. J Geom Anal 28, 335–359 (2018). https://doi.org/10.1007/s12220-017-9822-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9822-3

Keywords

Mathematics Subject Classification

Navigation