Skip to main content
Log in

Dynamics of a Family of Polynomial Automorphisms of \(\mathbb {C}^3\), a Phase Transition

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The polynomial automorphisms of the affine plane have been studied a lot: if f is such an automorphism, then either f preserves a rational fibration, has an uncountable centralizer, and its first dynamical degree equals 1, or f preserves no rational curves, has a countable centralizer, and its first dynamical degree is >1. In higher dimensions there is no such description. In this article we study a family \((\Psi _{ \upalpha })_{ \upalpha }\) of polynomial automorphisms of \(\mathbb {C}^3\). We show that the first dynamical degree of \({\mathbf \Psi }_{ \upalpha }\) is \(>1\), that \({\Psi }_{ \upalpha }\) preserves a unique rational fibration and has an uncountable centralizer. We then describe the dynamics of the family \(({\Psi }_{ \upalpha })_{ \upalpha }\), in particular the speed of points escaping to infinity. We also observe different behaviors according to the value of the parameter \({ \upalpha }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Indeed if \(p=(p_0,p_1,p_2)\) satisfies \(p_2 \ne 0\) and \(p_1 = - {\upvarphi } p_0\), we see that \(P_{{\upalpha }}^{(0)}(p) + {\upvarphi } P_{{\upalpha }}^{(1)}(p)=p_0 (1 + {\upvarphi } - {\upvarphi }^2) + {\upvarphi } p_0^q p_2^d = {\upvarphi } p_0^q p_2^d \ne 0\) hence \(\Delta _{{\upvarphi }'} \times \mathbb {C}\) is not left invariant by \(\Psi _{{\upalpha }}\).

  2. In particular, this is satisfied for points \(p \in \Omega \) as we have seen in Lemma 8.3.

  3. Indeed, if \(p \in W_{\Psi _{{\upalpha }}}^s(0_{\mathbb {C}^3})\), then \(h(p) \in W_{{\upphi }_{{\upalpha }}}^s(0_{\mathbb {C}^2})\); conversely, if \((p_0,p_1) \in K_{{\upphi }_{{\upalpha }}}^+\), then \((p_0,p_1)=h(p_0,p_1,1)\) and \((p_0,p_1,1) \in K_{\Psi _{{\upalpha }}}^+=W_{\Psi _{{\upalpha }}}^s(0_{\mathbb {C}^3})\).

  4. Else there exists \(n_1<n_0\) such that \(|P_{{\upalpha }}^{(n_1)}(p)| > ((1-{\upvarepsilon }){\upvarphi })^{n_0}\) and \(|P_{{\upalpha }}^{(n_1)}(p)| \ge |P_{{\upalpha }}^{(n_1-1)}(p)|\) and we consider \(n_1\) instead of \(n_0\).

References

  1. Bedford, E., Lyubich, M., Smillie, J.: Distribution of periodic points of polynomial diffeomorphisms of \({\bf C}^2\). Invent. Math. 114(2), 277–288 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of \({\bf C}^2\). IV. The measure of maximal entropy and laminar currents. Invent. Math. 112(1), 77–125 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \({\bf C}^2\). II. Stable manifolds and recurrence. J. Am. Math. Soc. 4(4), 657–679 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bedford, E., Smillie, J.: Polynomial diffeomorphisms of \({\bf C}^2\). III. Ergodicity, exponents and entropy of the equilibrium measure. Math. Ann. 294(3), 395–420 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. of Math. (2) 133(1), 73–169 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunella, M.: Minimal models of foliated algebraic surfaces. Bull. Soc. Math. Fr. 127(2), 289–305 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunimovich, L .A., Dani, S .G., Dobrushin, R .L., Jakobson, I .P., Kornfeld, M.V., Maslova, N .B., Pesin, Ya B, Smillie, J., Sukhov, Yu M, Vershik, A .M.: Dynamical Systems, Ergodic Theory and Applications, vol. 100. Springer, Berlin (2000)

    MATH  Google Scholar 

  8. Devaney, R., Nitecki, Z.: Shift automorphisms in the Hénon mapping. Commun. Math. Phys. 67(2), 137–146 (1979)

    Article  MATH  Google Scholar 

  9. Fornæss, J.E., Sibony, N.: Complex dynamics in higher dimensions. In: Complex Potential Theory (Montreal, PQ, 1993), volume 439, of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 131–186. Kluwer Acad. Publ., Dordrecht, (1994). Notes partially written by Estela A. Gavosto

  10. Friedland, S.: Entropy of algebraic maps. In: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), number Special Issue, pp. 215–228 (1995)

  11. Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dynam. Syst. 9(1), 67–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guedj, V., Sibony, N.: Dynamics of polynomial automorphisms of \({\bf C}^k\). Ark. Mat. 40(2), 207–243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heins, M.: On a notion of convexity connected with a method of Carleman. J. Anal. Math. 7(1), 53–77 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hénon, M.: Numerical study of quadratic area-preserving mappings. Q. Appl. Math. 27, 291–312 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Julia, G.: Mémoire sur la permutabilité des fractions rationnelles. Ann. Sci. École Norm. Sup. 3(39), 131–215 (1922)

    Article  MATH  Google Scholar 

  17. Jung, H.W.E.: Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)

    MathSciNet  MATH  Google Scholar 

  18. Lamy, S.: L’alternative de Tits pour \({{\rm Aut}}[\mathbb{C}^2]\). J. Algebra 239(2), 413–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ritt, J.F.: Permutable rational functions. Trans. Am. Math. Soc. 25(3), 399–448 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  20. Russakovskii, A., Shiffman, B.: Value distribution for sequences of rational mappings and complex dynamics. Indiana Univ. Math. J. 46(3), 897–932 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Serre, J.-P.: Arbres, amalgames, \({{\rm SL}}_{2}\). Société Mathématique de France, Paris (1977). Avec un sommaire anglais. Rédigé avec la collaboration de Hyman Bass, Astérisque, No. 46

  22. Sibony, N.: Dynamique des applications rationnelles de \({\bf P}^k\). In: Dynamique et Géométrie Complexes (Lyon, 1997), volume 8 of Panor. Synthèses, pp. ix-x, xi-xii, pp. 97–185. Soc. Math. France, Paris (1999)

  23. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Smillie, J.: The entropy of polynomial diffeomorphisms of \({\bf C}^2\). Ergod Theory Dynam. Syst 10(4), 823–827 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Artur Avila for helpful and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Déserti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Déserti, J., Leguil, M. Dynamics of a Family of Polynomial Automorphisms of \(\mathbb {C}^3\), a Phase Transition. J Geom Anal 28, 190–224 (2018). https://doi.org/10.1007/s12220-017-9816-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9816-1

Keywords

Mathematics Subject Classification

Navigation