Skip to main content
Log in

Sobolev Spaces and Bochner Laplacian on Complex Projective Varieties and Stratified Pseudomanifolds

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(V\subset {\mathbb {C}}{\mathbb {P}}^n\) be an irreducible complex projective variety of complex dimension v and let g be the Kähler metric on \({{\mathrm{reg}}}(V)\), the regular part of V, induced by the Fubini–Study metric of \({\mathbb {C}}{\mathbb {P}}^n\). In (J Am Math Soc 8:857–877, 1995) Li and Tian proved that \(W^{1,2}_0({{\mathrm{reg}}}(V),g)=W^{1,2}({{\mathrm{reg}}}(V),g)\), that the natural inclusion \(W^{1,2}({{\mathrm{reg}}}(V),g)\hookrightarrow L^2({{\mathrm{reg}}}(V),g)\) is a compact operator and that the heat operator associated with the Friedrich extension of the scalar Laplacian \(\Delta _0:C^{\infty }_c({{\mathrm{reg}}}(V))\rightarrow C^{\infty }_c({{\mathrm{reg}}}(V))\), that is, \(e^{-t\Delta _0^{{\mathcal {F}}}}:L^2({{\mathrm{reg}}}(V),g)\rightarrow L^2({{\mathrm{reg}}}(V),g)\), is a trace class operator. The goal of this paper is to provide an extension of the above result to the case of Sobolev spaces of sections and symmetric Schrödinger type operators with potential bounded from below where the underlying Riemannian manifold is the regular part of a complex projective variety endowed with the Fubini–Study metric or the regular part of a stratified pseudomanifold endowed with an iterated edge metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. See, for instance, [31, p. 876] or [45, p. 97].

References

  1. Akutagawa, K., Carron, G., Mazzeo, R.: The Yamabe problem on stratified spaces. Geom. Funct. Anal. 24(4), 1039–1079 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albin, P., Leichtnam, E., Mazzeo, R., Piazza, P.: The signature package on Witt spaces. Ann. Sci. Éc. Norm. Supér. 45(2), 241–310 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  4. Bei, F.: Poincaré duality, Hilbert complexes and geometric applications. Adv. Math. 267, 121–175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bei, F.: General perversities and \(L^2\)-de Rham and Hodge theorems on stratified pseudomanifolds. Bull. Sci. Math. 138(1), 2–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bei, F., Gueneysu, B.: \(q\)-Parabolicity of stratified pseudomanifolds and other singular spaces. arxiv:1505.06892

  7. Bérard, P.H.: Lectures on spectral geometry. Some aspects of direct problems in spectral geometry. In: Bérard, Berger, M. (eds.) 15o Colóquio Brasileiro de Matemática [15th Brazilian Mathematics Colloquium]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (1985)

    Google Scholar 

  8. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004)

    MATH  Google Scholar 

  9. Booß-Bavnbek, B., Wojciechowski, K.: Elliptic Boundary Problems for Dirac Operators. Mathematics: Theory and Applications. Birkhäuser Boston Inc, Boston (1993)

    Book  MATH  Google Scholar 

  10. Brasselet, J., Hector, G., Saralegi, M.: \(L^2\)-cohomologie des espaces statifiés. Manuscr. Math. 76, 21–32 (1992)

    Article  MATH  Google Scholar 

  11. Brasselet, J., Hector, G., Saralegi, M.: Théorème de de Rham pour les variétés stratifiées. Ann. Glob. Anal. Geom. 9(3), 211–243 (1991)

    Article  MATH  Google Scholar 

  12. Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. Anal. 108(1), 88–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brüning, J., Lesch, M.: Kähler-Hodge theory for conformal complex cones. Geom. Funct. Anal. 3(5), 439–473 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brüning, J., Lesch, M.: On the spectral geometry of algebraic curves. J. Reine Angew. Math. 474, 25–66 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Brüning, J., Seeley, R.: The resolvent expansion for second order regular singular operators. J. Funct. Anal. 73, 369–429 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brüning, J., Seeley, R.: The expansion of the resolvent near a singular stratum of conical type. J. Funct. Anal. 95, 255–290 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brüning, J., Seeley, R.: Regular singular asymptotics. Adv. Math. 58, 133–148 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chavel, I., Feldman, E.: Spectra of domains in compact manifolds. J. Funct. Anal. 30, 198–222 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), pp. 91–146. In: Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence (1980)

  20. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18(4), 575–657 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Conway, J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1990)

    Google Scholar 

  22. Grant Melles, C., Milman, P.: Metrics for singular analytic spaces. Pac. J. Math. 168(1), 61–156 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grieser, D., Lesch, M.: On the \(L^2\)-Stokes theorem and Hodge theory for singular algebraic varieties. Math. Nachr. 246(247), 68–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Reprint of the 1978 Original. Wiley Classics Library. Wiley, New York (1994)

    Google Scholar 

  25. Grigor’yan, A.: Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society, Providence/International Press, Boston (2009)

    Google Scholar 

  26. Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262(11), 4639–4674 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hess, H., Schrader, R., Uhlenbrock, D.A.: Domination of semigroups and generalization of Kato’s inequality. Duke Math. J. 44(4), 893–904 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hess, H., Schrader, R., Uhlenbrock, D.A.: Kato’s inequality and the spectral distribution of Laplacians on compact Riemannian manifolds. J. Differ. Geom. 15(1), 27–37 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lawson, H.B., Michelsohn, M.: Spin Geometry. Princeton Mathematical Series. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  31. Li, P., Tian, G.: On the heat kernel of the Bergmann metric on algebraic varieties. J. Am. Math. Soc. 8(4), 857–877 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. Progress in Mathematics. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  33. Mazzeo, R., Vertman, B.: Analytic torsion on manifolds with edges. Adv. Math. 231(2), 1000–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mooers, E.: Heat kernel asymptotics on manifolds with conical singularities. J. Anal. Math. 78, 1–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nagase, M.: On the heat operators of normal singular algebraic surfaces. J. Differ. Geom. 28(1), 37–57 (1988)

    MathSciNet  MATH  Google Scholar 

  36. Pati, V.: The heat trace on singular algebraic threefolds. J. Differ. Geom. 37(1), 245–261 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York/London (1972)

    MATH  Google Scholar 

  38. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York/London (1975)

    MATH  Google Scholar 

  39. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York/London (1978)

    MATH  Google Scholar 

  40. Roe, J.: Elliptic Operators, Topology and Asymptotic Methods. Pitman Research Notes in Mathematics Series, 395. Longman, Harlow (1998)

    Google Scholar 

  41. Ruppenthal, J.: Parabolicity of the regular locus of complex varieties. Proc. Am. Math. Soc. 144, 225–233 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series, 289. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  43. Taylor, M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Applied Mathematical Sciences, 2nd edn. Springer, New York (2011)

    Google Scholar 

  44. Wehrheim, K.: Uhlenbeck Compactness. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2004)

    Book  Google Scholar 

  45. Yoshikawa, K.I.: Degeneration of algebraic manifolds and the spectrum of Laplacian. Nagoya Math. J. 146, 83–129 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I wish to thank Pierre Albin, Jochen Brüning, Simone Cecchini, Eric Leichtnam, Paolo Piazza and Jean Ruppenthal for interesting comments and useful discussions. This research has been financially supported by the SFB 647 : Raum-Zeit-Materie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bei, F. Sobolev Spaces and Bochner Laplacian on Complex Projective Varieties and Stratified Pseudomanifolds. J Geom Anal 27, 746–796 (2017). https://doi.org/10.1007/s12220-016-9697-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9697-8

Keywords

Mathematics Subject Classification

Navigation